diff --git a/.Rhistory b/.Rhistory
index 68a53c1..3e97812 100644
--- a/.Rhistory
+++ b/.Rhistory
@@ -1,4 +1,221 @@
-here()
+agesex <- copdata %>%
+# Filter for cases only:
+filter(case == TRUE) %>%
+# Create age sex pyramid:
+apyramid::age_pyramid(
+# Specify column containing age categories:
+age_group = "age_cat",
+# Specify column containing sex:
+split_by = "sex",
+# Don't show midpoint on the graph:
+show_midpoint = FALSE
+)
+# Print plot:
+agesex
+# Create summary table:
+tabsymptoms <- copdata %>%
+# Select person characteristics to summarise:
+select(case, diarrhoea, bloody, vomiting,
+abdo, nausea, fever,headache, jointpain) %>%
+# transform clinical symptoms to factors, so NA can be accounted properly in the table
+dplyr::mutate(
+across(.cols = c(diarrhoea, bloody, vomiting,
+abdo, nausea, fever,headache, jointpain),
+.fns = ~as.factor(.))) %>%
+# The enxt paragraph does not work with Rversion 4.4.0
+# Make NA a explicit level of factor variables
+# dplyr::mutate(
+# across(.cols = c(diarrhoea, bloody, vomiting,
+# abdo, nausea, fever,headache, jointpain),
+# .fns = ~forcats::fct_na_value_to_level(.))) %>%
+# Create the summary table:
+gtsummary::tbl_summary(
+# Stratify by case:
+by = case,
+# take care of missing values
+missing = "no",
+# Calculate row percentages:
+percent = "column",
+# Create nice labels:
+label = list(
+diarrhoea ~ "Diarrhoea",
+bloody ~ "Dysentary",
+vomiting ~ "Vomiting",
+abdo ~ "Abdominal pain",
+nausea ~ "Nausea",
+fever ~ "Fever",
+headache ~ "Headache",
+jointpain ~ "Joint pain")
+) %>%
+# Add totals:
+add_overall() %>%
+# Make variable names bold and italics:
+bold_labels() %>%
+italicize_labels() %>%
+# Modify header:
+modify_header(
+label = "**Characteristic**",
+stat_0 = "**Overall**\n **N** = {N}",
+stat_1 = "**Non-case**\n **N** = {n}",
+stat_2 = "**Case**\n **N** = {n}",
+)
+# Create summary table:
+tabsymptoms <- copdata %>%
+# Select person characteristics to summarise:
+select(case, diarrhoea, bloody, vomiting,
+abdo, nausea, fever,headache, jointpain) %>%
+# transform clinical symptoms to factors, so NA can be accounted properly in the table
+dplyr::mutate(
+across(.cols = c(diarrhoea, bloody, vomiting,
+abdo, nausea, fever,headache, jointpain),
+.fns = ~as.factor(.))) %>%
+# The enxt paragraph does not work with Rversion 4.4.0
+# Make NA a explicit level of factor variables
+# dplyr::mutate(
+# across(.cols = c(diarrhoea, bloody, vomiting,
+# abdo, nausea, fever,headache, jointpain),
+# .fns = ~forcats::fct_na_value_to_level(.))) %>%
+# Create the summary table:
+gtsummary::tbl_summary(
+# Stratify by case:
+by = case,
+# take care of missing values
+missing = "no",
+# Calculate row percentages:
+percent = "column",
+# Create nice labels:
+label = list(
+diarrhoea ~ "Diarrhoea",
+bloody ~ "Dysentary",
+vomiting ~ "Vomiting",
+abdo ~ "Abdominal pain",
+nausea ~ "Nausea",
+fever ~ "Fever",
+headache ~ "Headache",
+jointpain ~ "Joint pain")
+) %>%
+# Add totals:
+add_overall() %>%
+# Make variable names bold and italics:
+bold_labels() %>%
+italicize_labels() %>%
+# Modify header:
+modify_header(
+label = "**Characteristic**",
+stat_0 = "**Overall**\n **N** = {N}",
+stat_1 = "**Non-case**\n **N** = {n}",
+stat_2 = "**Case**\n **N** = {n}",
+)
+# Print the table:
+tabsymptoms
+# Create list of symptom variables:
+symptoms <- c("diarrhoea",
+"bloody",
+"vomiting",
+"abdo",
+"nausea",
+"fever",
+"headache",
+"jointpain")
+# Create nice labels for case definition:
+caselabs <- ggplot2::as_labeller(c("0" = "Non-case",
+"1" = "Case"))
+# Select variables and cases:
+symptom_bar <- copdata %>%
+# Select symptom columns:
+select(case, c(all_of(symptoms))) %>%
+# Drop NAs:
+drop_na() %>%
+# Reshape (pivot longer):
+pivot_longer(!case,
+names_to = "Symptoms",
+values_drop_na = TRUE) %>%
+# Keep only TRUE values:
+filter(value == "1") %>%
+# Group by symptoms and case:
+group_by(Symptoms, case) %>%
+# Count for each symptom by case:
+dplyr::summarise(count = n()) %>%
+# Create plot:
+ggplot(
+mapping = aes(
+# Order symptom bars so most common ones are ontop:
+x = reorder(Symptoms, desc(count), decreasing = TRUE),
+y = count)) +
+# Display bars as proportions
+geom_bar(stat = "identity") +
+# Update x axis label:
+xlab("Symptoms") +
+# Update y axis label:
+ylab("Proportion of respondents") +
+# Flip plot on its side so symptom labels are clear:
+coord_flip() +
+# Facet the plot by (labelled) case:
+facet_wrap(facets = "case",
+labeller = caselabs,
+ncol = 2)
+# Print plot:
+symptom_bar
+# Create table of case status:
+total_ap <- tabyl(copdata, case) %>%
+# Add row totals:
+adorn_totals(where = "row") %>%
+# Add percentages with 1 digit after the decimal point:
+adorn_pct_formatting(digits = 1) %>%
+# Filter to rows where case is TRUE:
+filter(case == "1") %>%
+# Select the column percent:
+select(percent) %>%
+# Extract (pull) the value from this cell:
+pull()
+# Print result:
+total_ap
+# Table to calculate attack proportions:
+attack_prop <- copdata %>%
+# Select columns:
+select (case, class, group, sex) %>%
+# Create table:
+tbl_summary(
+# Stratified by case
+by = case,
+# with row percentages
+percent = "row") %>%
+# Add totals:
+add_overall() %>%
+# Make variable names bold and italics:
+bold_labels() %>%
+italicize_labels() %>%
+# Modify header:
+modify_header(
+label = "**Characteristic**",
+stat_0 = "**Overall** **N** = {N}",
+stat_1 = "**Non-case** **N** = {n}",
+stat_2 = "**Case** **N** = {n}"
+)
+# Table to calculate attack proportions:
+attack_prop <- copdata %>%
+# Select columns:
+select (case, class, group, sex) %>%
+# Create table:
+tbl_summary(
+# Stratified by case
+by = case,
+# with row percentages
+percent = "row") %>%
+# Add totals:
+add_overall() %>%
+# Make variable names bold and italics:
+bold_labels() %>%
+italicize_labels() %>%
+# Modify header:
+modify_header(
+label = "**Characteristic**",
+stat_0 = "**Overall** **N** = {N}",
+stat_1 = "**Non-case** **N** = {n}",
+stat_2 = "**Case** **N** = {n}"
+)
+# Print table:
+attack_prop
# Load the required libraries into the current R session:
pacman::p_load(rio,
here,
@@ -16,7 +233,7 @@ scales,
EpiStats,
broom)
# Import the raw data set:
-copdata <- rio::import(here::here("data", "Copenhagen_clean2_2024.rds"))
+copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"), trust = T)
# Check if age overall follows a normal distribution:
shapiro.test(copdata$age)
# Can simply have a look at
@@ -32,22 +249,122 @@ copdata %>%
select(sex, case) %>%
tbl_summary(by = case) %>%
add_p()
-EpiStats::riskratio(copdata$orzoD,
-copdata$case)
-epitools::riskratio(copdata$orzoD,
-copdata$case)
-epitools::riskratio(copdata$orzoD,
-copdata$case) %>%
+copdata %>%
+select(class, case) %>%
+tbl_summary(by = case) %>%
+add_p()
+copdata %>%
+select(group, case) %>%
+tbl_summary(by = case) %>%
+add_p()
+copdata %>%
+select(group, case) %>%
+tbl_summary(by = case) %>%
+add_p()
+copdata %>%
+select(sex, class, group, case) %>%
+tbl_summary(by = case) %>%
+add_p()
+copdata %>%
+select(sex, class, group, case) %>%
+tbl_summary(by = case) %>%
+add_p()
+# You could use the EpiStats package for each food item
+CS(copdata, "case", "feta")
+CS(copdata, "case", "sardines")
+CS(copdata, "case", "eggplant")
+CS(copdata, "case", "pasta")
+rr_tbl <- CSTable(copdata, "case", food_vars) %>%
+as.data.frame() %>%
+rownames_to_column() %>%
+flextable() %>%
+set_header_labels(
+values = c("Food Item",
+"Total exposed",
+"Cases exposed",
+"AR among exposed",
+"Total unexposed",
+"Cases unexposed",
+"AR among unexposed",
+"RR",
+"95% lower CI",
+"95% upper CI",
+"p-value"))
+# You can save time (and probably typos!) by creating a vector for food variables...
+food_vars <- c("feta", "sardines", "eggplant", "pasta",
+"veal", "tomsal", "dessert", "bread",
+"champagne", "beer", "redwine", "whitewine")
+# ...and using EpiStats::CSTable() to run all variables together!
+CSTable(copdata, "case", food_vars)
+rr_tbl <- CSTable(copdata, "case", food_vars) %>%
+as.data.frame() %>%
+rownames_to_column() %>%
+flextable() %>%
+set_header_labels(
+values = c("Food Item",
+"Total exposed",
+"Cases exposed",
+"AR among exposed",
+"Total unexposed",
+"Cases unexposed",
+"AR among unexposed",
+"RR",
+"95% lower CI",
+"95% upper CI",
+"p-value"))
+rr_tbl
+epitools::riskratio(copdata$pastaD,
+copdata$case,
+conf.level = 0.95)
+# Let's get the results directly exponentiated
+binom_pastaD_exp <- glm(case ~ pastaD, data = copdata,
+family = binomial(link = "log")) %>%
tidy(exponentiate = TRUE,
conf.int = TRUE)
-asd<-epitools::riskratio(copdata$orzoD,
+binom_pastaD_exp
+epitools::riskratio(copdata$champagneD,
copdata$case,
conf.level = 0.95)
-asd$measure
-asd$measure[2,2]
-asd$measure[1,2]
-asd$measure[2,1]
-exp(asd$measure[2,1])
+# Let's get the results directly exponentiated
+binom_champagneD_exp <- glm(case ~ champagneD, data = copdata,
+family = binomial(link = "log")) %>%
+tidy(exponentiate = TRUE,
+conf.int = TRUE)
+binom_champagneD_exp
+# Check if the 'pacman' package is installed, if not install it:
+if (!requireNamespace("pacman", quietly = TRUE)) install.packages("pacman")
+# Load the required libraries into the current R session:
+pacman::p_load(rio,
+here,
+skimr,
+plyr,
+janitor,
+lubridate,
+gtsummary,
+flextable,
+officer,
+epikit,
+apyramid,
+scales,
+tidyverse
+)
+# Import the raw data set:
+copdata <- import(here::here("data", "spetses_school.csv"))
+copdata <- copdata %>% rename(temp = veal,)
+copdata <- copdata %>% rename(temp = veal, tempD = vealD)
+copdata <- copdata %>% rename(veal = temp, vealD = tempD)
+copdata <- copdata %>%
+dplyr::rename(veal = temp, vealD = tempD)
+copdata <- copdata %>%
+dplyr::rename(temp = veal,
+tempD = vealD)
+copdata <- copdata %>%
+dplyr::rename(veal = pasta,
+vealD = pastaD)
+copdata <- copdata %>%
+dplyr::rename(pasta = temp,
+pastaD = tempD)
+export(copdata, "data/spetses_school.csv")
# Load the required libraries into the current R session:
pacman::p_load(rio,
here,
@@ -61,29 +378,9 @@ flextable,
officer,
epikit,
apyramid,
-scales)
-# Import the clean data set:
-copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"))
-lab <- rio::import(here::here("data", "Lab data.xlsx"),
-skip = 1) # skip the first row
-head(lab)
-View(lab)
-copdatalab <- left_join(copdata, lab,
-by = "id")
-# Tabulate:
-janitor::tabyl(dat = copdatalab, RT-PCR_ecoli_etec)
-copdatalab <- left_join(copdata, lab,
-by = "id")
-# Tabulate:
-janitor::tabyl(dat = copdatalab, "RT-PCR_ecoli_etec")
-copdatalab <- left_join(copdata, lab,
-by = "id")
-# Tabulate:
-janitor::tabyl(dat = copdatalab, "RT-PCR_ecoli_etec", "ct value_ecoli_etec")
-copdatalab <- left_join(copdata, lab,
-by = "id")
-# Tabulate:
-janitor::tabyl(dat = copdatalab, "RT-PCR_ecoli_etec")
+scales,
+EpiStats,
+broom)
# Load the required libraries into the current R session:
pacman::p_load(rio,
here,
@@ -101,8 +398,56 @@ scales,
EpiStats,
broom)
# Import the raw data set:
-copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"))
-?CS
+copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"), trust = T)
+# Check if age overall follows a normal distribution:
+shapiro.test(copdata$age)
+# Can simply have a look at
+hist(copdata$age)
+# Looking only at the students:
+students <- copdata %>%
+filter(group == "student")
+hist(students$age)
+# Perform Wilcoxon rank sum test on age and sex:
+wilcox.test(age ~ case,
+data = copdata)
+copdata %>%
+select(sex, case) %>%
+tbl_summary(by = case) %>%
+add_p()
+# You could use the EpiStats package for each food item
+CS(copdata, "case", "feta")
+CS(copdata, "case", "sardines")
+CS(copdata, "case", "eggplant")
+CS(copdata, "case", "pasta")
+# You can save time (and probably typos!) by creating a vector for food variables...
+food_vars <- c("feta", "sardines", "eggplant", "pasta",
+"veal", "tomsal", "dessert", "bread",
+"champagne", "beer", "redwine", "whitewine")
+# ...and using EpiStats::CSTable() to run all variables together!
+CSTable(copdata, "case", food_vars)
+rr_tbl <- CSTable(copdata, "case", food_vars) %>%
+as.data.frame() %>%
+rownames_to_column() %>%
+flextable() %>%
+set_header_labels(
+values = c("Food Item",
+"Total exposed",
+"Cases exposed",
+"AR among exposed",
+"Total unexposed",
+"Cases unexposed",
+"AR among unexposed",
+"RR",
+"95% lower CI",
+"95% upper CI",
+"p-value"))
+rr_tbl
+# Let's get the results directly exponentiated
+binom_pastaD_exp <- glm(case ~ pastaD, data = copdata,
+family = binomial(link = "log")) %>%
+tidy(exponentiate = TRUE,
+conf.int = TRUE)
+binom_pastaD_exp
# Load the required libraries into the current R session:
pacman::p_load(rio,
here,
@@ -120,14 +465,48 @@ scales,
EpiStats)
# Import the raw data set:
copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"))
+# Import the raw data set:
+copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"), trust = T)
stratall <- copdata %>%
# Mutate across to convert cases to numeric:
mutate(across(.cols = case,
.fns = ~ as.numeric(.)))
# Pass data to the csinter function:
-orzostrata <- csinter(x = stratall,
+pastastrata <- csinter(x = stratall,
+cases = "case",
+exposure = "veal",
+by = "pasta")
+pastastrata
+# Perform Wilcoxon rank sum test on veal and pasta:
+wilcox.test(veal ~ pasta,
+data = copdata)
+# Pass data to the csinter function:
+champstrata <- csinter(x = stratall,
cases = "case",
-exposure = "moussaka",
-by = "orzo")
-orzostrata
-orzostrata$df1
+exposure = "champagne",
+by = "pasta")
+champstrata
+pastastrata
+csinter(x = stratall,
++ cases = "case",
+csinter(x = stratall, cases = "case",exposure = "pasta",by = "veal")
+# Load the required libraries into the current R session:
+pacman::p_load(rio,
+here,
+tidyverse,
+skimr,
+plyr,
+janitor,
+lubridate,
+gtsummary,
+flextable,
+officer,
+epikit,
+apyramid,
+scales,
+EpiStats,
+broom)
+# Import the raw data set:
+copdata <- import(here::here("data", "spetses_school.csv"))
+tabyl(copdata$ill)
+View(copdata)
diff --git a/Case_definition.qmd b/Case_definition.qmd
index 88ba379..c168504 100644
--- a/Case_definition.qmd
+++ b/Case_definition.qmd
@@ -1,6 +1,8 @@
---
title: "Case Definition"
editor: visual
+editor_options:
+ chunk_output_type: console
---
## 1. Learning outcomes
@@ -11,7 +13,7 @@ At the end of the session, participants will be able to:
## 2. Story/plot description
-You will now create a new column in the data set to hold the case definition you decided in a previous step during your investigation. You can call this column `case` and set it to `TRUE` if the individual meets the case definition criteria and `FALSE` if not. You will use this column later on for any calculations needed (descriptive statistics, two-by-two tables to compute measures of association, etc.) to figure out the culprit of this outbreak.
+You will now create a new column in the data set to hold the case definition you decided in a previous step during your investigation. You can call this column `case` and set it to `1` if the individual meets the case definition criteria and `0` if not. You will use this column later on for any calculations needed (descriptive statistics, two-by-two tables to compute measures of association, etc.) to figure out the culprit of this outbreak.
## 3. Questions/Assignments
@@ -56,13 +58,13 @@ pacman::p_load(rio,
```{r, Import_data}
# Import the clean data set:
-copdata <- rio::import(here::here("data", "Spetses_clean1_2024.rds"))
+copdata <- rio::import(here::here("data", "Spetses_clean1_2024.rds"), trust = TRUE)
```
## 3.3 Identify the variables you need to apply the case definition criteria.
::: {.callout-tip title="Need a little bit of help?" collapse="true"}
-The variables we need from the dataset to apply the above case definition are: `meal`, `onset_datetime`, `diarrhoea`, `bloody` and `vomiting`.
+The variables we need from the dataset to apply the above case definition are: `meal`, `ill`, `onset_datetime`, `diarrhoea`, `bloody` and `vomiting`.
:::
## 3.4 Create a new `case` column to hold the binary case definition variable. Let's think about how to do this little by little:
@@ -72,7 +74,7 @@ The variables we need from the dataset to apply the above case definition are: `
You decide to exclude any people from the cohort who didn't eat at the dinner, because we specifically hypothesised a food item to be the vehicle of infection in this outbreak. Thus, filter your dataset to those who ate a meal: Keep in your dataset only those who ate a meal.
::: {.callout-tip title="Need a little bit of help?" collapse="true"}
-`filter` by those with `meal == TRUE`.
+`filter` by those with `meal == 1`.
:::
::: {.callout-warning title="Let's stop and... think!" collapse="true"}
@@ -81,7 +83,7 @@ What are some of the implications this decision may lead to? (excluding any peop
```{r}
copdata <- copdata %>%
- filter(meal == TRUE)
+ filter(meal == 1)
```
::: {.callout-note title="Once you've thought about the above, have a look here" collapse="true"}
@@ -89,14 +91,14 @@ Seven of the respondents actually said they did not eat the meal, but when it ca
\- At the survey state, one could adjust the design of an electronic questionnaire to prevent key questions from being skipped. This can come with both pros and cons. Allow fellows to discuss if time allows.
-\- Explore your data further, realise this is the case, and recode the `meal` variable for these individuals as `TRUE.` =\> This would be the way to go, but is not what we did in our example because we tried to keep it simple, and also because it is good to show that you may not always clean the data perfectly, and that has consequences: You can highlight the importance or really explore your data in depth.
+\- Explore your data further, realise this is the case, and recode the `meal` variable for these individuals as `1.` =\> This would be the way to go, but is not what we did in our example because we tried to keep it simple, and also because it is good to show that you may not always clean the data perfectly, and that has consequences: You can highlight the importance or really explore your data in depth.
By making the above decision, we may be missing cases and non-cases people, and thus, modifying the final estimate of our measure of association. =\> It is very important to know your data, explore it deeply and try to clean it as well as possible. Every step one makes when cleaning the data may have a consequence, and we should be aware of it when making the data cleaning decisions and when interpreting the results.
:::
### b) Fell ill after the start of the meal
-We define "fell ill" as any person having had diarrhoea with OR without blood, OR vomiting. To capture this information easily, you will create a new `gastrosymptoms` variable. This variable will indicate that the person had one OR ("or" is R is achieved by using `|`) more of the clinical symptoms in your definition.
+The questionnaire included a question on whether the person fell ill after the school dinner party (column `ill`). However, the person may have experience symptoms that are very unspecific to this outbreak (e.g., headache, joint pain...). We may want to only include those who develop gastrointestinal symptoms. That is any person having had diarrhoea with OR without blood, OR vomiting. To capture this information easily, you will create a new `gastrosymptoms` variable. This variable will indicate that the person had one OR ("or" is R is achieved by using `|`) more of the clinical symptoms in your definition.
Note that we the concept of having eaten a meal is already included as per one of the steps above.
@@ -109,7 +111,7 @@ What are some of the implications this decision may lead to? (defining "fell ill
:::
::: {.callout-note title="If you've thought about the above, have a look here" collapse="true"}
-Having one clinical symptom enough to be considered a potential case at this point may be considered too unspecific (low specificity). For example, a person who ate at the dinner party and developed diarrhoea for other reasons other than food poisoning (say, they recently started on antibiotics known for unbalancing the intestinal flora and causing diarrhoea) could be misclassified as a potential case. (Note we talk about **potential case**, and not **case**; that is because here we are not talking about cases per-se yet, but this decision has implications for when applying the case definition below).
+Having one gastrointestinal symptom is enough to be considered a potential case at this point, which may still be considered too unspecific (low specificity). For example, a person who ate at the dinner party and developed diarrhoea for other reasons other than food poisoning (say, they recently started on antibiotics known for unbalancing the intestinal flora and causing diarrhoea) could be misclassified as a potential case. (Note we talk about **potential case**, and not **case**; that is because here we are not talking about cases per-se yet, but this decision has implications for when applying the case definition below).
Moreover, those who did not report clinical symptoms will be defined as non-cases. Thus, we are assuming that these individuals did not develop symptoms because they didn't report them. The missing values could be due to, for example, them skipping the questions in the questionnaire. Some individuals may be reluctant to report symptoms, due to shame, fear of repercussion, or others. It is important to think ahead, before the interview, about ways to minimise these situations. For example, through questionnaire design, you may impede skipping questions; you could promote trust by using the right interviewers (in some cases this will be someone from the community, in others someone form specific NGOs, someone of a specific race or gender, etc); choose to carry out online questionnaires vs in person (or vice versa, depending on the situation), etc.
:::
@@ -118,13 +120,13 @@ Moreover, those who did not report clinical symptoms will be defined as non-case
copdata <- copdata %>%
mutate(gastrosymptoms = case_when(
# Those had diarrhoea...
- diarrhoea == TRUE |
+ diarrhoea == "1" |
#or bloody diarrhoea...
- bloody == TRUE |
- # or vomiting, are marked as TRUE (fell ill after the meal)
- vomiting == TRUE ~ TRUE,
- # The rest are FALSE. This includes those who ate a meal but had no symptoms (did not fell ill after the meal)
- .default = FALSE)
+ bloody == "1" |
+ # or vomiting, are marked as 1 (fell ill after the meal)
+ vomiting == "1" ~ 1,
+ # The rest are 0 This includes those who ate a meal but had no symptoms (did not fell ill after the meal)
+ .default = 0)
)
```
@@ -178,21 +180,21 @@ What are some of the implications this decision may lead to? (implications of th
All those not developing at least one symptom (diarrhoea with OR without blood, OR vomiting) 48h after the dinner are considered non-cases. This could (depending on how you decide to analyse your data) include those who had no symptoms at all, those who have missing data on the `onset_datetime` variable, and/or those who had symptoms before eating the meal. *This is a reminder that you need to be both careful and aware of the implications of your data analysis decisions.* If a person had clinical symptoms before eating the meal, they are considered as not-cases. However, it could be that a person had symptoms before the meal, and yet, still got infected by the pathogen when eating their meal (bad luck, we know...). According to this definition, we would be missing that case.
:::
-### d) Finally, with this information you can create a new `case` column to hold the binary (`TRUE`/`FALSE`) case definition variable.
+### d) Finally, with this information you can create a new `case` column to hold the binary (`1`/`0`) case definition variable.
```{r}
copdata <- copdata %>%
mutate(case = case_when(
- # Those who had symptoms <48h from the meal are cases (TRUE)
- gastrosymptoms == TRUE &
+ # Those who had symptoms <48h from the meal are cases (1)
+ gastrosymptoms == 1 &
onset_datetime >= meal_datetime &
- onset_datetime <= (meal_datetime + days(2)) ~ TRUE,
+ onset_datetime <= (meal_datetime + days(2)) ~ 1,
# Those who had symptoms >48h from the meal are non-cases (FALSE)
- gastrosymptoms == TRUE &
- onset_datetime > (meal_datetime + days(2)) ~ FALSE,
+ gastrosymptoms == 1 &
+ onset_datetime > (meal_datetime + days(2)) ~ 0,
# The rest are considered non-cases. Including, those who had no symptoms at all, who have missing data on the onset_datetime variable, or who had symptoms before eating the meal
- .default = FALSE)
+ .default = 0)
)
```
@@ -219,9 +221,9 @@ Let's have a look at how many people ate a meal, had symptoms, and were consider
```{r overview}
copdata %>%
- summarise(atemeal = sum(meal == TRUE),
- hadsympt = sum(gastrosymptoms == TRUE),
- nb_cases = sum(case == TRUE)
+ summarise(atemeal = sum(meal == 1),
+ hadsympt = sum(gastrosymptoms == 1),
+ nb_cases = sum(case == 1)
)
```
diff --git a/Data_import_cleaning.qmd b/Data_import_cleaning.qmd
index 56365fe..d595ce7 100644
--- a/Data_import_cleaning.qmd
+++ b/Data_import_cleaning.qmd
@@ -1,6 +1,8 @@
---
title: "Data import and cleaning"
editor: visual
+editor_options:
+ chunk_output_type: console
---
# **1. Learning outcomes**
@@ -36,7 +38,6 @@ if (!requireNamespace("pacman", quietly = TRUE)) install.packages("pacman")
# Load the required libraries into the current R session:
pacman::p_load(rio,
here,
- tidyverse,
skimr,
plyr,
janitor,
@@ -46,7 +47,9 @@ pacman::p_load(rio,
officer,
epikit,
apyramid,
- scales)
+ scales,
+ tidyverse
+)
```
@@ -56,7 +59,7 @@ pacman::p_load(rio,
```{r, Import_data}
# Import the raw data set:
-copdata <- rio::import(here::here("data", "spetses_school.csv"))
+copdata <- import(here::here("data", "spetses_school.csv"))
```
## 3.3. Explore and clean your data
@@ -79,7 +82,7 @@ You could use `head()`, `dim()`, `str()`, or `skim()` to have a quick look at th
head(copdata)
dim(copdata)
str(copdata)
-skimr::skim(copdata)
+skim(copdata)
names(copdata)
```
@@ -94,7 +97,7 @@ Through visual exploration of the `age` histogram we see that there is at least
# Have a look at the histogram
hist(copdata$age)
# Create cross-tab with the group variable:
-janitor::tabyl(dat = copdata,
+tabyl(dat = copdata,
var1 = age,
var2 = group)
```
@@ -113,7 +116,7 @@ Now, have a look at your cross-tab again:
```{r cross-tab_age_group}
-janitor::tabyl(dat = copdata,
+tabyl(dat = copdata,
var1 = age,
var2 = group)
```
@@ -165,7 +168,7 @@ drtable <- copdata %>%
# Select all the columns with column names that end in upper case 'D':
select(ends_with("D", ignore.case = FALSE)) %>%
# Create the summary table, excluding missing values:
- gtsummary::tbl_summary(missing = "no")
+ tbl_summary(missing = "no")
# Print the summary table:
drtable
@@ -186,7 +189,9 @@ You can use `mutate` to modify the type of the following variables:
+-------------------------------------------------------------------------------------------------------------+---------------------+-----------------+--------------------------------------------------------------------------------------+
| class | integer | factor | mutate(), as.factor() |
+-------------------------------------------------------------------------------------------------------------+---------------------+-----------------+--------------------------------------------------------------------------------------+
-| All the clinical symptom variables | integer | logical | mutate(across()), as.logical() |
+| ill | integer | factor | mutate(), as.factor() |
++-------------------------------------------------------------------------------------------------------------+---------------------+-----------------+--------------------------------------------------------------------------------------+
+| All the clinical symptom variables | integer | factor | mutate(across()), as.factor() |
+-------------------------------------------------------------------------------------------------------------+---------------------+-----------------+--------------------------------------------------------------------------------------+
| All the food variables representing the amount of specific foods eaten (those finishing with a capital "D") | integer | factor | mutate(across()), as.factor() |
+-------------------------------------------------------------------------------------------------------------+---------------------+-----------------+--------------------------------------------------------------------------------------+
@@ -199,15 +204,16 @@ You can use `mutate` to modify the type of the following variables:
: Table 1: Variable types to modify
-#### Sex, group and class
+#### Sex, class and ill
-Let's start transforming one-by-one the first two variables in the table: `sex`, and `class`.
+Let's start transforming one-by-one the first three variables in the table: `sex`, `class` and `ill`.
```{r, mutate_simple}
copdata <- copdata %>%
- dplyr::mutate(
+ mutate(
sex = as.factor(sex),
- class = as.factor(class))
+ class = as.factor(class),
+ ill = as.factor(ill))
```
@@ -219,11 +225,11 @@ For these variables, we are going to show you a couple of different ways to carr
```{r, mutate_cs}
copdata <- copdata %>%
- dplyr::mutate(
+ mutate(
# clinical symptoms
across(.cols = c(diarrhoea, bloody, vomiting,
abdo, nausea, fever,headache, jointpain),
- .fns = ~ as.logical(.)
+ .fns = ~ as.factor(.)
)
)
```
@@ -234,18 +240,18 @@ copdata <- copdata %>%
# Create a vector with all the food variables representing the amount of specific foods items eaten (those finishing with a capital "D")
# One way of doing it:
food_dose <- copdata %>%
- dplyr::select(
+ select(
ends_with("D", ignore.case = FALSE)) %>%
names()
# Another way of doing it:
-# food_dose <- c("fetaD", "sardinesD", "eggplantD", "moussakaD",
-# "orzoD", "greeksalD", "dessertD", "breadD",
+# food_dose <- c("fetaD", "sardinesD", "eggplantD", "pastaD",
+# "vealD", "greeksalD", "dessertD", "breadD",
# "champagneD", "beerD", "redwineD", "whitewineD")
copdata <- copdata %>%
- dplyr::mutate(
+ mutate(
# food dose variables
across(.cols = all_of(food_dose),
.fns = ~as.factor(.)))
@@ -253,7 +259,7 @@ copdata <- copdata %>%
```
::: {.callout-note title="Note" collapse="true"}
-The tilde (`~`) above is used to apply the transformation `as.logical(.)` to each selected column, which in our case is either all columns included in `food_items` and `food_dose.`
+The tilde (`~`) above is used to apply the transformation `as.factor(.)` to each selected column, which in our case is either all columns included in `food_items` and `food_dose.`
:::
#### Date and time variables
@@ -274,7 +280,7 @@ class(copdata$dayonset)
# Update copdata:
copdata <- copdata %>%
# Change column to date class:
- dplyr::mutate(
+ mutate(
dayonset = lubridate::dmy(dayonset))
# Check class of updated column:
@@ -291,7 +297,7 @@ We can check if we have any missing values by cross-tabulating `starthour` with
```{r crosstab_dayonset_starthour}
# Cross-tabulate dayonset with starthour:
-janitor::tabyl(dat = copdata,
+tabyl(dat = copdata,
var1 = starthour,
var2 = dayonset)
```
@@ -302,7 +308,7 @@ This shows us that there are two respondents who had an onset date, but are miss
copdata <- copdata %>%
# Combine dayonset and starthour in a new date time variable:
mutate(onset_datetime =
- lubridate::ymd_h(
+ ymd_h(
str_glue("{dayonset}, {starthour}"),
# Deal with missing starthour:
truncated = 2))
@@ -333,7 +339,7 @@ Use `rio::export()`.
```{r export_clean_data}
-rio::export(x = copdata,
+export(x = copdata,
file = here::here("data", "Spetses_clean1_2024.rds"))
```
diff --git a/IntroCourse_inCop.Rproj b/IntroCourse_inCop.Rproj
index 8e3c2eb..7b2a3ff 100644
--- a/IntroCourse_inCop.Rproj
+++ b/IntroCourse_inCop.Rproj
@@ -1,4 +1,5 @@
Version: 1.0
+ProjectId: 7ab6702e-aa74-4dd3-8f10-1a4b9b06add9
RestoreWorkspace: Default
SaveWorkspace: Default
diff --git a/Lab_and_Descriptive.qmd b/Lab_and_Descriptive.qmd
index 6f22880..c292559 100644
--- a/Lab_and_Descriptive.qmd
+++ b/Lab_and_Descriptive.qmd
@@ -46,7 +46,7 @@ pacman::p_load(rio,
```{r, Import_data}
# Import the clean data set:
-copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"))
+copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"), trust = T)
lab <- rio::import(here::here("data", "Lab data.xlsx"),
skip = 1) # skip the first row.
```
@@ -76,7 +76,7 @@ What can you infer from the incubation periods in the histogram?
# Create a dataset with only cases
cases <- copdata %>%
- filter(case == TRUE)
+ filter(case == 1)
incplot <- cases %>%
# Create an empty ggplot frame:
@@ -359,8 +359,8 @@ symptoms <- c("diarrhoea",
"jointpain")
# Create nice labels for case definition:
-caselabs <- ggplot2::as_labeller(c(`FALSE` = "Non-case",
- `TRUE` = "Case"))
+caselabs <- ggplot2::as_labeller(c("0" = "Non-case",
+ "1" = "Case"))
# Select variables and cases:
symptom_bar <- copdata %>%
# Select symptom columns:
@@ -372,7 +372,7 @@ symptom_bar <- copdata %>%
names_to = "Symptoms",
values_drop_na = TRUE) %>%
# Keep only TRUE values:
- filter(value == TRUE) %>%
+ filter(value == "1") %>%
# Group by symptoms and case:
group_by(Symptoms, case) %>%
@@ -414,7 +414,7 @@ total_ap <- tabyl(copdata, case) %>%
# Add percentages with 1 digit after the decimal point:
adorn_pct_formatting(digits = 1) %>%
# Filter to rows where case is TRUE:
- filter(case == TRUE) %>%
+ filter(case == "1") %>%
# Select the column percent:
select(percent) %>%
# Extract (pull) the value from this cell:
diff --git a/README.md b/README.md
index ff5b0d3..2b9e7a3 100644
--- a/README.md
+++ b/README.md
@@ -8,13 +8,11 @@ This repository contains the R teaching material that can be used (it is not com
The SimOb is an 4-day exercise where fellows are provided a series of injects through which they will follow a 10-steps framework to investigate a specific outbreak. Some of the injects are dedicated to R-exercises that can be proved quite handy during an outbreak investigation. Those injects are maintained in this repository and are stored as different .qmd files, under the root folder:
-- Data_import_cleaning.qmd
-- Case_definition.qmd
-- Lab_and_Descriptive.qmd
-- Univariate.qmd
-- Stratified.qmd
-
-
+- Data_import_cleaning.qmd
+- Case_definition.qmd
+- Lab_and_Descriptive.qmd
+- Univariate.qmd
+- Stratified.qmd
# REST (FROM TO HEREFORWARDS) NEEDS UPDATING
diff --git a/Stratified.qmd b/Stratified.qmd
index 247548d..bc50d6f 100644
--- a/Stratified.qmd
+++ b/Stratified.qmd
@@ -15,7 +15,7 @@ At the end of the session, participants will be able to:
## 2. Story/plot description
-From the univariable analysis, it seems that eating orzpo and eating moussaka as well as drinking champagne are associated with the highest risk of becoming ill. There are, however, many other food items that are associated with an increased risk (even if not statistically significant).
+From the univariable analysis, it seems that eating pasta and eating veal as well as drinking champagne are associated with the highest risk of becoming ill. There are, however, many other food items that are associated with an increased risk (even if not statistically significant).
You should next think about potential confounders and about effect modification. Think about which variables you might want to check for effect modification or confounding. One common strategy is to base this decision on the results obtained in the univariable analysis and a p-value threshold of 0.20-0.25. Also, food items that are known risk factors for gastroenteritis could also be included regardless of their univariable p-value.
@@ -49,24 +49,24 @@ pacman::p_load(rio,
```{r, Import_data}
# Import the raw data set:
-copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"))
+copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"), trust = T)
```
## 3.4. Consider and assess for confounding and/or effect modification
-Have a look at the relative risk for being a case having eaten a specific food item (for example, moussake), when stratified by another variable (for example, orzo). You may consider stratifying by orzo, as it has the highest RR in the univariable analysis.
+Have a look at the relative risk for being a case having eaten a specific food item (for example, veal), when stratified by another variable (for example, pasta). You may consider stratifying by pasta, as it has the highest RR in the univariable analysis.
There are many variables in this dataset and it might not make sense to stratify each variable by each other variable on our search for effect modifiers and confounders.
-However, we also don't want to be too restrictive as a variable which actually (i.e. causally) is associated with the outcome might not show a significant association at the significant level we decided (say 5%) in the univariable analysis due to confounding. Therefore, we could test all variables statistically significant at the 15%, 20%, or 25% level (specific percentage to be decided by your group). In our solutions here, we are looking at moussaka and champagne, stratified by orzo, but you may decide to look at other food items as well.
+However, we also don't want to be too restrictive as a variable which actually (i.e. causally) is associated with the outcome might not show a significant association at the significant level we decided (say 5%) in the univariable analysis due to confounding. Therefore, we could test all variables statistically significant at the 15%, 20%, or 25% level (specific percentage to be decided by your group). In our solutions here, we are looking at veal and champagne, stratified by pasta, but you may decide to look at other food items as well.
::: {.callout-tip title="Need a little bit of help?" collapse="true"}
Use the function `csinter()` of the EpiStats package.
:::
-### a) Moussaka as exposure of interest, stratified by having eaten orzo
+### a) Veal as exposure of interest, stratified by having eaten pasta
-If we stratify the **effect of moussaka by orzo** we ask the question: does eating orzo modify or confound the association between eating moussaka and being a case?
+If we stratify the **effect of veal by pasta** we ask the question: does eating pasta modify or confound the association between eating veal and being a case?
```{r}
stratall <- copdata %>%
@@ -75,42 +75,42 @@ stratall <- copdata %>%
.fns = ~ as.numeric(.)))
# Pass data to the csinter function:
-orzostrata <- csinter(x = stratall,
+pastastrata <- csinter(x = stratall,
cases = "case",
- exposure = "moussaka",
- by = "orzo")
+ exposure = "veal",
+ by = "pasta")
-orzostrata
+pastastrata
```
-Let's check if orzo is associated with moussaka (if we are thinking moussaka may be a confounder, we need to see if there is an association between the potential confounder (moussaka) and the exposure (orzo)):
+Let's check if pasta is associated with veal (if we are thinking pasta may be a confounder, we need to see if there is an association between the potential confounder (pasta) and the exposure (veal)):
```{r}
-# Perform Wilcoxon rank sum test on orzo and moussaka:
-wilcox.test(orzo ~ moussaka,
+# Perform Wilcoxon rank sum test on veal and pasta:
+wilcox.test(veal ~ pasta,
data = copdata)
```
-### b) Champagne as exposure of interest, stratified by having eaten orzo
+### b) Champagne as exposure of interest, stratified by having eaten pasta
```{r}
# Pass data to the csinter function:
champstrata <- csinter(x = stratall,
cases = "case",
exposure = "champagne",
- by = "orzo")
+ by = "pasta")
```
::: {.callout-warning title="Let's stop and... think!" collapse="true"}
Are there any indications to make you think there may be effect modification and/or confounding?
:::
-We could stratify by orzo (the strongest risk factor in the univariable analysis), to examine if orzo confounds the association between eating moussaka and being a case. Before stratification, we will need to check if orzo meets the conditions of being a confounder. For a variable to be a confounder it needs to be associated both with the outcome (being a case) and with the exposure (and not be in the causal pathway between exposure and outcome). We know from univariable analysis that orzo is associated with being a case. If we run a Wilcoxon rank sum test, we will see that orzo is also associated with moussaka (indeed, you can see that most people either had both moussaka and orzo or neither of these food items, so they are associated with each other).
+We could stratify by pasta (the strongest risk factor in the univariable analysis), to examine if pasta confounds the association between eating veal and being a case. Before stratification, we will need to check if pasta meets the conditions of being a confounder. For a variable to be a confounder it needs to be associated both with the outcome (being a case) and with the exposure (and not be in the causal pathway between exposure and outcome). We know from univariable analysis that pasta is associated with being a case. If we run a Wilcoxon rank sum test, we will see that pasta is also associated with veal (indeed, you can see that most people either had both pasta and veal or neither of these food items, so they are associated with each other).
-Above, we uses `ccinter` to stratify and save the object as "orzostrata".
+Above, we uses `ccinter` to stratify and save the object as "pastastrata".
-orzostrata: Within the stratum of the people who ate orzo, moussaka has no significant effect (RR = 1.20, CI: 0.60 - 2.41). The same holds within the stratum of people who didn't eat orzo (RR = 1.05, CI = 0.38, 2.92). The adjusted MH-RR also suggests that moussaka has no effect (RRadj = 1.15, CI: 0.80 - 2.85). To identify confounding, we want to look at the % change between the crude and the adjusted RR. This is given by the csinter output "Adjusted/crude relative change". The difference between the crude and the MH-RR in this case is \>20% suggesting that orzo confounds the association between moussaka and the disease.
+pastastrata: Within the stratum of the people who ate pasta, veal has no significant effect (RR = 1.20, CI: 0.60 - 2.41). The same holds within the stratum of people who didn't eat pasta (RR = 1.05, CI = 0.38, 2.92). The adjusted MH-RR also suggests that veal has no effect (RRadj = 1.15, CI: 0.80 - 2.85). To identify confounding, we want to look at the % change between the crude and the adjusted RR. This is given by the csinter output "Adjusted/crude relative change". The difference between the crude and the MH-RR in this case is \>20% suggesting that pasta confounds the association between veal and the disease.
-This result suggest that moussaka is not a risk factor of the disease and that the crude observed effect was due to the confounding effect of orzo.
+This result suggest that veal is not a risk factor of the disease and that the crude observed effect was due to the confounding effect of pasta.
-If you stratify by moussaka, you see that moussaka does not confound the association between orzo and the disease. The same applies if you stratify the exposure to orzo by other variables. The above, the higher RR for orzo and the dose response relationship we found earlier for orzo (remember this was optional) provide additional evidence that there was something going on with the orzo with pesto dish!
+If you stratify by veal, you see that veal does not confound the association between pasta and the disease. The same applies if you stratify the exposure to pasta by other variables. The above, the higher RR for pasta and the dose response relationship we found earlier for pasta (remember this was optional) provide additional evidence that there was something going on with the pasta with pesto dish!
diff --git a/Univariate.qmd b/Univariate.qmd
index 33fcf33..84dffc8 100644
--- a/Univariate.qmd
+++ b/Univariate.qmd
@@ -65,7 +65,7 @@ pacman::p_load(rio,
```{r, Import_data}
# Import the raw data set:
-copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"))
+copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"), trust = T)
```
## 3.3. Hypothesis tests for other variables
@@ -169,13 +169,13 @@ Create a `food_vars` vector containing food variables of interest and use the fu
CS(copdata, "case", "feta")
CS(copdata, "case", "sardines")
CS(copdata, "case", "eggplant")
-CS(copdata, "case", "moussaka")
+CS(copdata, "case", "pasta")
```
```{r}
# You can save time (and probably typos!) by creating a vector for food variables...
-food_vars <- c("feta", "sardines", "eggplant", "moussaka",
- "orzo", "greeksal", "dessert", "bread",
+food_vars <- c("feta", "sardines", "eggplant", "pasta",
+ "veal", "tomsal", "dessert", "bread",
"champagne", "beer", "redwine", "whitewine")
# ...and using EpiStats::CSTable() to run all variables together!
@@ -215,68 +215,68 @@ rr_tbl <- CSTable(copdata, "case", food_vars) %>%
· Do you think there are any confounders or effect modifiers? If so, how would you investigate these further?
:::
-The interesting results here are that the food items that are most suspicious are orzo, moussaka and champagne. Orzo as such is unlikely to be contaminated, but as you can see in the picture (and from the dinner night), it was served with pesto! Maybe it was the pesto? Who-ho-ho!
+The interesting results here are that the food items that are most suspicious are pasta,veal and champagne. Pasta as such is unlikely to be contaminated, but as you can see in the picture (and from the dinner night), it was served with pesto! Maybe it was the pesto? Who-ho-ho!
-Before one jumps into conclusions, consider that this result could be due to confounding! Maybe orzo was "clean" but eaten by all the people who ate the food item that actually was contaminated!(Optional)
+Before one jumps into conclusions, consider that this result could be due to confounding! Maybe pasta was "clean" but eaten by all the people who ate the food item that actually was contaminated!(Optional)
## 3.5. (Optional) Dose Response
Check for a dose-response relationship between the food items with the highest RR values (the top 3) and being a case.
-#### a) Orzo
+#### a) Pasta
Using `epitools::riskratio` function:
```{r}
-epitools::riskratio(copdata$orzoD,
- copdata$case,
+epitools::riskratio(copdata$pastaD,
+ copdata$case,
conf.level = 0.95)
```
Using a binomial regression:
```{r}
-# Binomial regression for RRs.
-# The outcome needs to be exponentiated so we can interpret it properly!
-binom_orzoD <- glm(case ~ orzoD, data = copdata,
- family = binomial(link = "log"))
-# To get exponentiated:
-binom_orzoD_exp <- glm(case ~ orzoD, data = copdata,
+# Let's get the results directly exponentiated
+binom_pastaD_exp <- glm(case ~ pastaD, data = copdata,
family = binomial(link = "log")) %>%
tidy(exponentiate = TRUE,
conf.int = TRUE)
-binom_orzoD_exp
+binom_pastaD_exp
```
::: {.callout-warning title="Let's stop and... think!" collapse="true"}
What do these results tell you?
:::
-Results suggest a dose response relationship of having eaten orzo, pointing towards orzoas the potential vehicle. The higher the amount of orzothey ate, the stronger is the association (RR) with getting ill/being a case.
+Results suggest a dose response relationship of having eaten pasta, pointing towards pasta as the potential vehicle. The higher the amount of pasta they ate, the stronger is the association (RR) with getting ill/being a case.
-#### b) Moussaka
+#### b) Veal
Using `epitools::riskratio` function:
```{r}
-epitools::riskratio(copdata$moussakaD,
- copdata$case,
+epitools::riskratio(copdata$vealD,
+ copdata$case,
conf.level = 0.95)
```
Using a binomial regression:
```{r}
+# Binomial regression for RRs.
+# The outcome needs to be exponentiated so we can interpret it properly!
+binom_vealD <- glm(case ~ vealD, data = copdata,
+ family = binomial(link = "log"))
-# Let's get the results directly exponentiated
-binom_moussakaD_exp <- glm(case ~ moussakaD, data = copdata,
+# To get exponentiated:
+binom_vealD_exp <- glm(case ~ vealD, data = copdata,
family = binomial(link = "log")) %>%
tidy(exponentiate = TRUE,
conf.int = TRUE)
-binom_moussakaD_exp
+binom_vealD_exp
```
#### c) Champagne
diff --git a/data/Spetses_clean1_2024.rds b/data/Spetses_clean1_2024.rds
index 28ce645..bec68e0 100644
Binary files a/data/Spetses_clean1_2024.rds and b/data/Spetses_clean1_2024.rds differ
diff --git a/data/Spetses_clean2_2024.rds b/data/Spetses_clean2_2024.rds
index 2bb10ad..88652f7 100644
Binary files a/data/Spetses_clean2_2024.rds and b/data/Spetses_clean2_2024.rds differ
diff --git a/data/spetses_school.csv b/data/spetses_school.csv
index e4c7916..f347db1 100644
--- a/data/spetses_school.csv
+++ b/data/spetses_school.csv
@@ -1,398 +1,398 @@
-id,sex,age,group,class,diarrhoea,bloody,vomiting,abdo,nausea,fever,headache,jointpain,starthour,meal,feta,fetaD,sardines,sardinesD,eggplant,eggplantD,moussaka,moussakaD,orzo,orzoD,greeksal,greeksalD,bread,breadD,dessert,dessertD,champagne,champagneD,beer,beerD,redwine,redwineD,whitewine,whitewineD,dayonset
-sp-2-001,male,18,1,2,1,0,0,1,0,,0,0,9,1,1,2,1,2,0,0,1,2,1,3,1,1,1,2,1,2,1,1,1,3,0,0,0,0,6oct2024
-sp-3-003,female,18,1,3,,,,,,,,,,1,0,0,0,0,0,0,1,1,1,3,1,3,1,3,1,3,1,1,0,0,1,3,0,0,
-sp-1-005,female,17,1,1,,,,1,1,,1,,,1,,,,,,,1,0,1,1,,,1,1,,,0,0,0,0,0,0,0,0,
-sp-2-006,male,17,1,2,,,,,,,,,,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,3,1,3,1,3,1,3,
-sp-3-007,female,18,1,3,1,0,0,1,1,0,1,0,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,2,0,0,1,3,6oct2024
-sp-2-008,male,180,1,2,1,0,0,1,0,0,0,0,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,3,0,0,1,2,7oct2024
-sp-0-009,male,16,0,,,,,,,,,,,1,1,2,1,2,1,2,1,1,1,2,1,2,1,2,0,0,1,2,,,1,2,1,1,
-sp-1-010,female,15,1,1,0,0,0,0,1,0,1,0,,1,1,1,0,0,0,0,1,3,1,3,1,2,1,2,1,1,1,1,1,1,0,0,1,3,
-sp-0-011,female,43,0,,1,,,,1,,1,1,3,1,1,2,1,2,,,1,2,1,2,1,2,1,2,,,1,1,,,1,2,,,7oct2024
-sp-1-012,male,16,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,3,1,2,1,2,,,1,1,1,2,0,0,0,0,
-sp-2-013,male,18,1,2,,,,,,,,,,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,3,0,0,1,3,
-sp-3-015,male,18,1,3,1,0,0,1,1,0,1,1,21,1,0,0,0,0,0,0,1,3,1,2,0,0,1,2,0,0,1,3,1,3,0,0,0,0,6oct2024
-sp-3-016,male,20,1,3,1,0,0,1,0,0,0,,9,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,3,0,0,0,0,6oct2024
-sp-0-017,male,58,0,,1,,,,1,,,,21,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,,,1,3,,,6oct2024
-sp-3-018,male,19,1,3,1,0,0,1,1,0,0,0,9,1,0,0,0,0,0,0,1,2,1,3,1,1,1,2,1,2,1,3,1,3,0,0,0,0,7oct2024
-sp-0-019,male,17,1,,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,1,1,1,3,1,1,1,1,
-sp-0-020,female,39,0,,0,0,0,1,1,0,1,,,1,1,2,1,2,1,2,1,3,1,3,1,2,1,2,1,1,1,1,,,1,2,1,1,
-sp-2-021,male,18,1,2,1,1,0,1,1,,1,1,21,1,0,0,1,1,1,2,1,3,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,1,6oct2024
-sp-2-022,male,17,1,2,,,,,,,,,,1,1,2,0,0,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,1,1,3,
-sp-2-023,female,17,1,2,1,0,1,1,1,0,1,0,9,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,1,1,1,1,0,0,1,2,6oct2024
-sp-1-024,female,16,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,1,1,1,1,1,1,3,
-sp-1-025,female,17,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,3,1,3,1,2,1,1,0,0,1,1,1,1,1,1,1,3,
-sp-3-026,female,19,1,3,0,0,0,1,1,0,1,0,,1,1,3,1,3,1,3,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,1,1,1,
-sp-2-027,male,17,1,2,1,,,,,,,,15,1,0,0,0,0,,,1,2,1,2,,,1,2,0,0,,,1,3,1,1,1,1,6oct2024
-sp-3-028,female,18,1,3,0,0,0,1,1,1,1,,,1,0,0,1,2,0,0,1,2,1,2,0,0,1,1,0,0,1,2,0,0,0,0,0,0,
-sp-1-029,male,16,1,1,1,0,0,1,1,1,1,0,15,1,1,2,1,2,1,2,1,2,1,3,1,3,1,2,1,2,0,0,1,3,0,0,1,1,6oct2024
-sp-1-030,male,16,1,1,1,,,,1,,1,,9,1,1,1,0,0,1,2,1,3,1,2,0,0,1,2,0,0,0,0,1,2,0,0,1,1,6oct2024
-sp-2-031,male,18,1,2,1,0,0,1,1,0,1,0,15,1,1,2,0,0,1,2,1,1,1,2,0,0,,,1,1,1,1,1,3,0,0,0,0,6oct2024
-sp-2-032,female,18,1,2,1,0,0,1,1,,0,0,9,1,1,2,0,0,0,0,1,3,1,3,0,0,1,2,1,3,1,1,1,3,,,,,6oct2024
-sp-3-033,female,19,1,3,1,,,1,1,0,0,0,21,1,0,0,1,1,0,0,1,1,1,1,,,0,0,,,1,2,1,3,0,0,0,0,6oct2024
-sp-2-034,female,17,1,2,1,,0,1,1,1,1,1,9,1,1,1,1,1,0,0,1,1,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,3,6oct2024
-sp-1-036,male,16,1,1,,,,,,,,,,1,1,3,0,0,0,0,1,0,1,2,1,2,1,2,0,0,1,1,1,3,0,0,0,0,
-sp-2-037,female,17,1,2,0,0,0,1,0,0,0,0,,1,0,0,0,0,0,0,1,2,1,2,0,0,0,0,1,2,1,1,1,3,0,0,1,3,
-sp-1-038,female,17,1,1,1,0,0,1,1,0,1,0,15,1,0,0,0,0,0,0,1,2,1,1,0,0,1,2,0,0,1,1,1,3,0,0,0,0,6oct2024
-sp-1-039,female,17,1,1,1,,,1,1,,,,15,1,1,1,1,2,,,1,0,1,2,0,0,1,1,0,0,1,1,1,3,0,0,1,3,6oct2024
-sp-3-040,male,19,1,3,1,0,1,1,1,,0,0,9,1,1,2,1,2,1,2,1,3,1,2,1,2,1,2,1,2,1,3,1,3,0,0,0,0,6oct2024
-sp-2-041,female,16,1,2,0,0,0,1,0,0,0,0,,1,1,1,1,2,0,0,1,2,1,2,1,2,1,2,0,0,1,1,1,1,0,0,1,1,
-sp-2-042,male,17,1,2,1,0,0,0,1,1,0,0,9,1,1,1,0,0,0,0,1,3,1,2,1,2,1,2,0,0,1,1,1,3,0,0,0,0,6oct2024
-sp-0-045,female,18,1,,1,0,0,1,1,0,0,0,3,1,0,0,0,0,0,0,1,1,0,0,0,0,1,2,0,0,1,1,1,3,0,0,0,0,6oct2024
-sp-2-046,male,17,1,2,1,0,0,1,0,0,0,1,9,1,1,2,1,2,1,2,,2,,,,,1,2,1,2,1,2,1,2,1,2,1,2,6oct2024
-sp-2-047,male,18,1,2,,,,,,,,,,1,0,0,0,0,0,0,1,3,1,3,0,0,1,2,0,0,0,0,1,2,0,0,0,0,
-sp-1-048,female,17,1,1,,,,1,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,1,0,0,1,1,0,0,0,0,0,0,
-sp-1-049,female,16,1,1,1,0,1,1,1,0,1,1,9,1,0,0,0,0,0,0,1,2,1,1,0,0,1,2,1,2,1,1,1,2,0,0,1,3,6oct2024
-sp-2-050,female,19,1,2,,1,,1,1,,,,9,1,1,2,1,2,0,0,1,2,1,2,1,3,1,2,,,1,1,1,3,1,1,1,3,6oct2024
-sp-3-051,female,18,1,3,0,0,0,1,1,0,0,0,,1,1,3,1,2,1,2,1,2,1,3,1,3,1,2,1,3,1,1,1,1,0,0,1,2,
-sp-0-052,male,56,0,,,,,,,,,,,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,,,1,2,,,
-sp-2-053,female,17,1,2,,,,,,,,,,1,1,1,0,0,0,0,1,0,1,2,0,0,1,2,0,0,1,1,1,3,0,0,1,2,
-sp-1-054,female,16,1,1,1,0,0,1,1,0,1,0,21,1,0,0,0,0,0,0,1,0,1,1,1,1,1,2,0,0,1,1,0,0,0,0,0,0,6oct2024
-sp-0-055,male,18,1,,1,,,1,,,1,,15,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,1,1,3,1,3,0,0,0,0,6oct2024
-sp-2-056,female,18,1,2,,,,,,,,,,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,2,1,3,0,0,1,1,
-sp-1-057,male,16,1,1,1,0,1,1,1,0,0,0,15,1,0,0,0,0,1,1,1,2,1,2,1,1,1,2,,,1,1,1,3,0,0,1,2,6oct2024
-sp-3-058,male,20,1,3,,,,1,,,,,21,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,,,6oct2024
-sp-3-059,female,18,1,3,1,0,1,1,1,,1,,9,1,1,2,1,2,1,2,1,1,1,2,1,2,1,2,0,0,1,1,1,2,0,0,1,1,6oct2024
-sp-2-060,female,18,1,2,1,0,0,0,1,0,1,0,15,1,1,1,0,0,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,3,0,0,1,1,7oct2024
-sp-1-062,male,16,1,1,1,0,0,1,1,0,1,0,15,1,1,2,1,2,1,2,1,2,1,2,,,1,2,,,0,0,1,3,0,0,1,3,6oct2024
-sp-3-063,female,19,1,3,1,,0,1,1,,1,0,9,1,1,1,0,0,0,0,1,2,1,2,1,2,1,2,0,0,1,3,1,1,0,0,1,2,6oct2024
-sp-1-064,male,15,1,1,,,,,,,,,,1,0,0,1,1,0,0,1,3,0,0,0,0,1,2,0,0,1,1,,,,,1,3,
-sp-1-066,male,16,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,3,0,0,1,3,
-sp-1-067,female,17,1,1,0,0,0,0,1,1,1,0,,1,1,2,1,2,1,2,1,1,1,2,1,1,1,2,0,0,1,1,1,1,,,1,1,
-sp-1-068,female,17,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,2,1,1,1,2,0,0,1,1,
-sp-2-069,female,16,1,2,,,,,,,,,,1,0,0,0,0,0,0,1,1,1,2,0,0,1,1,0,0,1,1,1,3,0,0,1,1,
-sp-1-070,male,16,1,1,,,,,,,,,,1,1,2,1,2,1,3,1,3,0,0,0,0,1,2,0,0,0,0,1,3,0,0,1,3,
-sp-1-072,female,17,1,1,1,1,0,1,1,1,1,1,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,1,1,,,,,1,3,6oct2024
-sp-2-073,male,18,1,2,0,0,0,1,1,0,1,0,,1,0,0,0,0,0,0,1,2,0,0,0,0,1,3,0,0,1,1,1,3,0,0,0,0,
-sp-1-075,male,15,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,0,1,2,1,2,1,2,1,2,0,0,0,0,0,0,0,0,
-sp-1-076,female,17,1,1,1,,,,,,1,,9,1,0,0,0,0,0,0,1,3,1,1,0,0,1,1,0,0,1,2,1,1,,,1,3,6oct2024
-sp-1-077,female,17,1,1,,,,1,1,,1,,,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0,0,1,3,
-sp-3-078,female,18,1,3,,,,,,,,,,1,1,1,1,1,0,0,1,2,1,2,1,2,1,2,1,2,1,1,1,3,0,0,1,2,
-sp-2-079,female,18,1,2,1,0,1,1,1,,,0,9,1,1,1,0,0,0,0,1,2,1,2,1,2,1,2,0,0,1,2,1,2,0,0,1,2,6oct2024
-sp-1-080,female,16,1,1,1,0,0,1,1,0,1,0,9,1,0,0,1,1,1,2,1,1,1,1,0,0,1,2,0,0,1,2,1,3,0,0,1,3,6oct2024
-sp-3-081,male,18,1,3,1,0,0,0,1,0,0,0,9,1,1,2,1,2,1,2,1,2,1,3,1,2,1,2,1,2,1,3,1,3,0,0,1,2,6oct2024
-sp-2-082,female,16,1,2,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,3,1,1,0,0,0,0,1,1,1,3,0,0,1,1,
-sp-1-083,male,16,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-sp-2-084,male,17,1,2,1,0,1,1,1,0,1,0,15,1,1,1,0,0,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,3,0,0,0,0,6oct2024
-sp-1-085,female,16,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,1,1,1,0,0,1,1,1,1,1,1,1,2,0,0,1,3,
-sp-2-086,female,17,1,2,1,0,1,1,1,0,0,0,9,1,1,1,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,1,1,1,0,0,1,2,6oct2024
-sp-1-087,female,16,1,1,,,,,,,,,,1,1,2,1,2,0,0,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,0,0,
-sp-1-088,female,17,1,1,,,,,,,,,,1,1,1,1,2,1,1,1,2,1,1,1,1,0,0,0,0,1,1,0,0,0,0,1,3,
-sp-2-089,female,18,1,2,,,,1,,,,,,1,1,1,1,1,0,0,1,2,0,0,0,0,1,2,0,0,1,1,1,3,0,0,0,0,
-sp-0-090,male,16,1,,,,,,,,,,,1,1,2,1,2,1,2,1,3,1,3,0,0,1,2,1,3,1,1,0,0,0,0,0,0,
-sp-3-091,female,19,1,3,0,0,0,1,0,0,0,0,,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,
-sp-2-092,female,16,1,2,1,,,1,,,,,15,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,1,3,6oct2024
-sp-3-093,female,19,1,3,0,0,1,1,1,,1,0,21,1,1,1,1,1,1,1,1,1,0,0,1,1,1,2,1,1,1,3,0,0,0,0,0,0,5oct2024
-sp-2-094,female,16,1,2,,,,1,,,1,,,1,1,2,,,,,1,2,1,2,,,1,2,1,2,,,,,,,1,3,
-sp-1-095,female,16,1,1,1,0,0,1,0,0,1,0,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,1,2,1,3,1,3,0,0,6oct2024
-sp-1-096,male,16,1,1,,,,,,,,,,1,1,3,1,3,1,3,1,3,1,3,1,3,,,1,3,,,1,2,,,,,
-sp-3-097,female,17,1,3,1,0,0,1,1,0,1,0,9,1,1,3,0,0,1,2,1,2,1,3,1,2,1,2,1,3,1,3,1,3,0,0,1,1,6oct2024
-sp-1-099,female,17,1,1,,,,,,,,,,1,1,2,1,2,1,1,1,2,1,2,1,2,1,2,1,2,1,1,1,1,1,1,1,3,
-sp-2-101,male,17,1,2,1,0,0,1,0,0,0,0,15,1,1,2,1,3,0,0,1,3,1,3,0,0,1,2,1,2,1,1,1,3,0,0,0,0,6oct2024
-sp-2-102,female,18,1,2,1,0,0,0,1,,1,,15,1,0,0,1,2,0,0,1,2,1,2,1,2,1,2,0,0,1,3,1,3,0,0,1,1,6oct2024
-sp-0-103,male,16,1,,,,,,,,,,,1,1,1,1,1,1,1,1,1,1,1,,,1,1,1,1,0,0,1,1,0,0,1,2,
-sp-3-104,female,18,1,3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-sp-0-105,male,18,1,,1,,,,1,,1,,15,1,1,2,1,2,1,2,1,3,1,3,1,2,,,1,2,1,1,1,3,0,0,0,0,6oct2024
-sp-1-106,female,16,1,1,1,0,0,1,1,,1,,9,1,1,2,1,2,0,0,1,2,1,3,1,3,1,1,1,3,0,0,1,1,0,0,1,3,6oct2024
-sp-1-107,female,17,1,1,,,,,,,,,,0,,,,,,,,,,,,,,,,,,,,,,,,,
-sp-1-108,male,16,1,1,1,0,0,0,0,0,0,0,21,1,0,0,0,0,1,2,1,2,1,2,0,0,1,2,0,0,1,1,1,3,0,0,1,1,6oct2024
-sp-0-109,female,17,1,,1,,,1,,,,1,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,1,1,1,1,0,0,1,3,6oct2024
-sp-2-110,female,17,1,2,1,,,1,,,1,,9,1,1,1,1,1,0,0,1,0,1,1,1,1,1,1,0,0,1,1,1,1,,,1,2,6oct2024
-sp-1-111,male,17,1,1,1,0,1,1,1,0,1,1,15,1,1,1,1,3,0,0,1,3,1,2,0,0,1,2,1,2,1,3,1,3,1,1,1,3,6oct2024
-sp-2-112,male,17,1,2,0,0,0,1,0,0,0,0,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,1,1,1,3,0,0,1,2,
-sp-0-113,female,17,1,,,,,,,,,,,1,1,2,1,2,0,0,1,2,1,2,1,2,1,2,1,2,1,2,1,3,0,0,1,2,
-sp-1-114,male,16,1,1,1,0,0,1,0,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,3,1,3,1,3,1,1,7oct2024
-sp-3-115,male,18,1,3,0,0,0,1,1,0,1,0,,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,0,0,1,3,1,3,0,0,0,0,
-sp-1-116,male,17,1,1,1,,1,,1,,,,9,1,1,2,0,0,1,2,1,3,1,3,0,0,1,3,0,0,1,3,1,3,0,0,1,2,6oct2024
-sp-3-117,male,18,1,3,0,0,0,0,0,0,0,0,,1,0,0,1,2,1,1,1,3,1,2,1,1,1,2,0,0,1,3,1,3,0,0,1,1,
-sp-1-118,male,16,1,1,0,0,0,1,,0,0,0,,1,1,2,1,2,1,2,1,3,1,3,1,1,1,2,1,3,1,1,1,3,1,1,1,1,
-sp-1-119,male,17,1,1,1,0,0,1,0,0,0,1,21,1,1,1,1,2,,,1,3,1,3,0,0,1,2,0,0,1,3,1,2,0,0,1,3,6oct2024
-sp-0-120,male,17,1,,1,0,1,1,1,,1,,9,1,1,2,1,2,1,2,1,3,1,1,0,0,1,1,1,3,1,1,1,3,0,0,1,1,6oct2024
-sp-1-121,male,16,1,1,0,0,0,1,0,,1,0,,1,0,0,0,0,0,0,1,3,1,1,0,0,1,3,0,0,1,1,1,3,0,0,0,0,
-sp-3-122,female,18,1,3,0,0,0,1,1,1,1,0,,1,1,1,0,0,1,2,1,2,1,3,0,0,1,2,1,3,1,3,1,3,0,0,0,0,
-sp-1-123,male,16,1,1,,,,,,,,,,1,0,0,0,0,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,3,0,0,1,3,
-sp-1-124,female,16,1,1,1,,1,1,,,1,,9,1,0,0,0,0,0,0,1,1,0,0,0,0,1,2,0,0,1,1,0,0,1,1,1,1,7oct2024
-sp-2-125,female,18,1,2,1,0,0,1,1,0,0,0,9,1,1,2,1,2,,,1,0,1,1,1,1,1,2,0,0,1,2,1,3,0,0,1,3,6oct2024
-sp-1-126,male,17,1,1,0,0,0,0,0,0,1,0,,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,1,1,3,0,0,0,0,
-sp-3-127,female,18,1,3,1,0,0,1,1,,,,15,1,1,2,1,2,,,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,0,0,6oct2024
-sp-2-128,female,18,1,2,0,0,0,1,1,0,0,0,,1,1,1,0,0,1,1,1,1,1,2,1,2,1,2,0,0,1,1,1,2,0,0,1,2,
-sp-1-129,female,17,1,1,1,0,0,1,1,0,1,0,9,1,1,3,1,3,1,3,1,3,1,3,1,2,1,2,0,0,1,1,1,1,0,0,1,1,6oct2024
-sp-1-131,female,16,1,1,1,0,0,1,1,0,0,0,9,1,0,0,0,0,1,1,1,0,1,3,1,2,0,0,1,1,1,1,0,0,0,0,1,3,6oct2024
-sp-3-132,male,19,1,3,,,,,,,,,,1,0,0,0,0,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,0,0,0,0,
-sp-1-134,female,16,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,1,1,
-sp-3-135,male,20,1,3,1,,0,1,0,,0,0,15,1,1,3,1,2,0,0,1,2,1,1,1,1,1,2,1,2,1,3,1,3,0,0,1,3,6oct2024
-sp-2-136,female,17,1,2,0,0,1,1,0,0,0,0,9,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,1,2,1,3,0,0,1,3,6oct2024
-sp-1-137,female,16,1,1,1,,,1,1,,,,21,1,1,1,0,0,0,0,1,1,1,3,0,0,1,2,0,0,1,1,1,3,0,0,1,1,6oct2024
-sp-3-138,female,19,1,3,0,0,0,0,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-sp-1-139,male,16,1,1,,,,,,,,,,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,,,1,3,5oct2024
-sp-1-140,male,16,1,1,,,,,,,,,,1,1,2,1,2,0,0,1,3,1,3,1,2,1,2,1,2,1,1,1,2,,,1,3,
-sp-1-141,female,16,1,1,,,,,,,,,,1,1,1,1,2,0,0,0,1,0,0,0,0,1,1,0,0,1,1,1,3,0,0,0,0,
-sp-3-142,male,18,1,3,1,0,0,0,1,0,1,0,15,1,1,2,1,2,0,0,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,1,2,6oct2024
-sp-3-143,male,18,1,3,1,0,0,1,1,0,0,0,9,1,1,3,1,3,1,3,1,2,1,2,1,2,1,3,1,2,1,1,1,3,0,0,0,0,6oct2024
-sp-3-144,male,18,1,3,1,1,0,1,0,1,0,0,15,1,0,0,1,2,0,0,1,3,1,3,0,0,0,0,0,0,1,1,1,3,0,0,1,2,6oct2024
-sp-1-145,female,15,1,1,,,,,,,,,,1,1,3,1,2,1,3,1,2,1,2,0,0,1,2,0,0,0,0,0,0,0,0,1,1,
-sp-2-146,female,18,1,2,1,0,0,1,,0,0,0,15,1,1,2,1,2,0,0,1,2,1,2,1,2,1,2,0,0,1,1,1,1,0,0,1,2,6oct2024
-sp-1-147,male,16,1,1,1,0,1,1,1,0,0,0,21,1,1,2,1,2,0,0,1,3,1,3,1,2,0,0,0,0,1,1,1,3,0,0,1,3,6oct2024
-sp-2-148,female,17,1,2,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,2,1,2,1,2,0,0,1,1,1,3,1,1,1,3,
-sp-3-149,female,18,1,3,1,0,1,1,1,0,1,0,15,1,1,3,1,3,1,3,1,2,1,2,1,1,1,3,0,0,1,2,1,1,0,0,1,2,6oct2024
-sp-1-150,male,16,1,1,,,,,,,,,,1,1,3,1,3,1,3,1,3,1,2,1,2,1,2,1,3,1,1,0,0,0,0,0,0,
-sp-3-151,female,18,1,3,1,0,0,1,1,,1,1,9,1,1,2,1,2,1,2,1,,1,1,0,0,1,2,0,0,1,1,1,3,0,0,1,2,6oct2024
-sp-3-152,female,19,1,3,1,0,0,1,0,0,0,0,9,1,1,2,1,2,1,2,1,1,1,3,1,3,1,2,1,3,1,2,0,0,0,0,0,0,6oct2024
-sp-3-154,male,18,1,3,1,0,0,1,0,1,1,0,15,1,1,2,1,2,0,0,1,3,1,1,0,0,1,2,0,0,1,1,1,3,0,0,0,0,6oct2024
-sp-3-155,male,19,1,3,1,,1,1,1,,1,0,3,1,1,2,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,1,1,2,1,1,1,1,6oct2024
-sp-3-156,male,18,1,3,0,0,1,1,1,1,1,0,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,0,0,0,0,1,2,6oct2024
-sp-2-157,female,18,1,2,1,,,1,,,,,9,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,0,0,1,1,0,0,0,0,1,3,6oct2024
-sp-2-158,male,17,1,2,1,0,1,1,1,,1,0,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,3,1,1,0,0,6oct2024
-sp-1-159,female,16,1,1,1,,1,,,,1,,15,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,6oct2024
-sp-1-160,male,17,1,1,0,0,0,1,1,0,,,,1,0,0,1,2,1,2,1,3,1,1,1,3,1,2,0,0,1,1,1,3,0,0,0,0,
-sp-2-161,female,19,1,2,1,0,0,1,,0,1,0,15,1,1,2,0,0,0,0,1,1,1,2,1,1,1,2,1,1,1,1,0,0,0,0,1,1,6oct2024
-sp-3-162,female,18,1,3,0,0,0,1,1,0,,0,,1,1,2,1,1,,,1,2,1,2,1,2,1,2,0,0,0,0,1,3,0,0,1,3,
-sp-1-163,female,16,1,1,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,2,0,0,1,1,0,0,1,1,1,3,1,1,0,0,
-sp-1-164,female,16,1,1,1,0,1,1,1,0,1,0,15,1,1,1,1,2,1,1,1,1,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,3,7oct2024
-sp-3-165,male,18,1,3,1,,1,1,1,1,0,0,3,1,1,2,1,2,1,2,1,3,1,3,1,3,1,2,0,0,1,3,1,3,0,0,0,0,6oct2024
-sp-1-166,female,16,1,1,0,0,1,1,1,,1,0,15,1,1,2,1,2,1,2,1,3,1,2,1,2,1,2,1,1,1,1,,,,,1,3,6oct2024
-sp-2-167,female,16,1,2,,,,,,,,,,1,1,2,1,1,0,0,1,,1,2,1,2,1,2,,,1,1,1,2,0,0,1,2,
-sp-3-168,female,19,1,3,1,0,0,1,1,,0,0,21,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,0,0,0,0,1,1,5oct2024
-sp-3-169,female,18,1,3,,,,,,,,,,1,1,1,1,2,1,1,1,3,1,3,1,2,1,2,1,2,1,3,1,2,0,0,1,1,
-sp-3-170,female,19,1,3,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,3,1,3,1,2,1,3,1,1,0,0,0,0,1,3,
-sp-2-172,male,17,1,2,,,,,,,,,,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,1,2,
-sp-2-173,female,17,1,2,,,,,,,,,,1,0,0,0,0,0,0,0,2,0,0,1,2,1,2,0,0,0,0,0,0,0,0,1,2,
-sp-1-174,female,15,1,1,1,0,0,1,1,0,1,0,15,1,1,3,1,2,0,0,0,3,0,0,0,0,1,2,0,0,1,1,1,2,0,0,1,1,6oct2024
-sp-1-175,female,16,1,1,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,1,3,1,1,0,0,1,,
-sp-1-176,male,17,1,1,,,,,,,,,,1,1,3,1,3,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,2,0,0,1,1,
-sp-3-177,female,18,1,3,,,,,,,,,,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,2,1,3,,,1,1,
-sp-1-178,male,16,1,1,,,,,,,,,,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,1,1,1,0,0,1,3,
-sp-2-179,female,18,1,2,,,,,,,,,,1,0,0,0,0,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,3,1,1,1,2,
-sp-1-180,male,16,1,1,1,0,,1,1,1,1,0,15,1,0,0,1,3,1,3,1,3,1,3,1,3,1,1,0,0,1,1,1,3,0,0,1,3,6oct2024
-sp-0-181,female,17,1,,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,3,0,0,1,3,
-sp-1-182,female,17,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-sp-0-183,female,16,1,,1,0,1,1,1,0,1,0,9,1,0,0,1,2,0,0,1,2,1,3,0,0,1,2,,,1,1,0,0,0,0,0,0,6oct2024
-sp-1-184,male,16,1,1,1,0,0,1,,0,0,0,15,1,1,2,1,2,0,0,1,3,1,2,1,1,1,2,1,3,1,1,1,3,1,2,1,1,6oct2024
-sp-3-185,male,18,1,3,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,3,1,2,0,0,
-sp-1-186,female,16,1,1,1,0,0,1,1,0,1,0,21,1,1,1,1,2,0,0,1,2,1,2,0,0,1,2,0,0,0,0,1,2,0,0,1,2,6oct2024
-sp-1-187,female,17,1,1,,,,,,,,,,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,,,0,0,1,2,0,0,1,1,
-sp-1-188,female,17,1,1,1,,,1,,1,1,1,9,1,1,3,1,2,1,3,1,1,1,3,1,2,1,2,1,2,1,1,1,2,,,1,3,6oct2024
-sp-2-189,male,17,1,2,,,1,1,,,1,,15,1,1,2,0,0,1,2,1,2,1,2,1,2,1,3,,,1,3,1,3,1,2,,,6oct2024
-sp-3-190,female,19,1,3,1,0,1,1,1,0,0,0,15,1,1,1,1,2,1,2,1,2,1,2,0,0,1,1,0,0,1,3,1,3,0,0,1,3,6oct2024
-sp-1-191,male,17,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,3,0,0,1,2,0,0,1,3,1,3,0,0,1,,
-sp-3-192,male,19,1,3,0,0,0,1,0,0,1,0,,1,0,0,1,2,0,0,1,2,1,2,1,2,1,1,0,0,1,3,1,3,0,0,0,0,
-sp-2-193,female,17,1,2,,,,,,,,,,1,0,0,0,0,0,0,0,2,0,0,0,0,1,2,0,0,1,1,0,0,0,0,1,3,
-sp-1-194,female,16,1,1,1,0,0,1,1,,,,15,1,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,0,0,1,3,0,0,1,3,6oct2024
-sp-3-195,male,17,1,3,1,0,1,1,1,1,1,0,15,1,1,2,1,2,0,0,1,2,1,2,0,0,1,2,1,2,1,3,1,3,0,0,1,3,6oct2024
-sp-2-196,female,17,1,2,,,,,,,,,,1,1,1,0,0,1,2,1,2,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,3,
-sp-2-197,female,17,1,2,,,,,,,,,,0,,,,,,,,,,,,,,,,,,,,,,,,,
-sp-3-198,female,19,1,3,0,0,1,1,1,0,1,0,3,1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,7oct2024
-sp-2-199,female,17,1,2,0,0,1,1,1,,1,0,15,1,1,1,0,0,0,0,1,2,1,1,0,0,1,2,0,0,1,1,0,0,0,0,0,0,6oct2024
-sp-1-200,male,16,1,1,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,1,0,0,1,2,0,0,0,0,1,3,0,0,0,0,
-sp-3-201,female,18,1,3,1,,1,1,1,,1,,15,1,0,0,0,0,0,0,1,3,1,2,1,3,0,0,0,0,,,,,,,1,1,6oct2024
-sp-1-202,female,17,1,1,1,,,,,,,,9,,,,,,,,,,,,,,,,,,,,,,,,,,6oct2024
-sp-2-203,female,17,1,2,1,0,0,1,1,1,1,0,9,1,0,0,0,0,0,0,1,2,1,3,1,2,1,2,0,0,0,0,1,3,1,1,1,2,6oct2024
-sp-1-204,female,16,1,1,0,0,0,1,1,1,1,0,,1,1,3,1,2,1,3,1,3,1,3,1,3,1,2,0,0,1,1,1,1,0,0,1,1,
-sp-1-205,male,16,1,1,1,,1,,1,,,,9,1,0,0,1,2,0,0,1,3,1,3,1,2,1,2,0,0,1,1,1,2,0,0,1,3,6oct2024
-sp-3-206,female,18,1,3,1,,,,,,,,15,1,0,0,,,,,1,2,1,2,,,1,2,1,2,1,1,1,1,,,,,6oct2024
-sp-1-207,female,16,1,1,,,,,,,,,,1,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,1,1,0,0,0,0,1,3,
-sp-1-208,female,16,1,1,,,,,,,,,,0,1,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,1,1,1,3,0,0,1,3,
-sp-1-209,male,15,1,1,1,0,1,1,1,,1,0,21,1,1,3,1,3,1,3,1,3,1,3,1,2,1,2,1,3,1,2,,,,,1,1,5oct2024
-sp-1-210,female,16,1,1,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,2,1,2,1,1,0,0,0,0,0,0,0,0,0,0,
-sp-3-211,female,19,1,3,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,0,0,1,2,
-sp-1-213,female,16,1,1,,,,,,,,,,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,1,1,3,1,1,1,3,
-sp-2-214,male,17,1,2,,,,,,,,,,1,1,1,0,0,0,0,1,2,1,2,0,0,1,2,1,3,0,0,1,3,0,0,1,2,
-sp-2-215,male,18,1,2,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,2,0,0,0,0,0,0,1,3,0,0,1,3,1,3,
-sp-2-216,male,18,1,2,1,0,1,1,1,0,1,0,9,1,1,3,0,0,1,2,1,2,1,3,0,0,1,2,0,0,1,1,1,3,1,1,1,3,6oct2024
-sp-1-217,female,16,1,1,1,0,1,1,1,1,0,0,9,1,1,1,0,0,1,2,1,2,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,3,6oct2024
-sp-1-219,male,16,1,1,1,0,0,1,1,0,1,0,9,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,1,2,6oct2024
-sp-2-220,male,18,1,2,0,0,0,1,0,0,1,0,,1,1,2,1,2,1,1,1,3,1,3,1,2,1,2,1,2,1,1,1,3,0,0,0,0,
-sp-2-221,female,17,1,2,,,,,,,1,,,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,1,1,3,0,0,1,2,
-sp-1-222,male,16,1,1,1,,,1,,,,,9,1,1,2,0,0,1,2,1,2,1,3,0,0,1,1,0,0,1,1,1,2,0,0,1,2,6oct2024
-sp-2-223,male,17,1,2,1,0,0,1,0,1,1,,9,1,1,1,1,2,0,0,1,3,1,2,0,0,1,2,0,0,1,1,1,3,1,2,1,2,6oct2024
-sp-3-224,female,18,1,3,1,1,0,1,1,0,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,
-sp-2-225,male,18,1,2,1,0,0,1,0,0,1,0,9,1,0,0,0,0,0,0,1,0,1,2,0,0,1,2,0,0,1,1,0,0,1,1,1,2,6oct2024
-sp-3-226,male,19,1,3,1,,1,,,,,,9,1,1,2,1,2,1,2,1,3,1,3,1,2,1,2,0,0,1,1,1,3,0,0,1,3,6oct2024
-sp-1-227,male,16,1,1,1,0,0,1,0,0,0,0,9,1,1,1,1,2,0,0,1,1,1,1,0,0,1,1,1,1,1,2,1,3,0,0,0,0,6oct2024
-sp-2-228,female,18,1,2,,,,,,,,,,1,1,2,0,0,0,0,0,0,0,0,0,0,1,2,0,0,1,1,1,2,0,0,1,3,
-sp-3-229,female,18,1,3,1,0,0,1,0,1,0,,15,1,1,1,1,2,0,0,1,2,1,3,0,0,1,2,1,2,1,2,0,0,0,0,1,1,6oct2024
-sp-2-230,female,18,1,2,0,0,0,1,1,0,0,0,,1,1,1,1,2,0,0,1,2,1,1,1,1,1,2,0,0,1,1,1,2,0,0,1,2,
-sp-1-231,female,16,1,1,,,,,,,,,,1,1,1,1,3,0,0,1,2,1,1,0,0,1,2,0,0,1,1,1,3,0,0,1,2,
-sp-0-232,female,18,1,,1,0,1,1,1,1,0,0,15,1,0,0,0,0,0,0,1,1,1,2,1,1,1,2,0,0,0,0,1,3,0,0,1,2,6oct2024
-sp-2-233,female,17,1,2,1,,,1,,,,,21,1,0,0,1,1,0,0,1,3,1,3,1,2,1,2,0,0,1,2,1,1,0,0,1,3,6oct2024
-sp-2-234,male,17,1,2,1,0,0,0,0,0,0,0,21,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,1,1,1,0,0,0,0,6oct2024
-sp-2-235,female,17,1,2,0,0,0,1,,0,1,0,,1,1,2,1,2,0,0,0,1,0,0,0,0,1,2,0,0,1,1,1,3,1,3,0,0,
-sp-2-236,male,18,1,2,1,0,0,0,0,0,1,0,9,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,,,1,3,,,1,1,6oct2024
-sp-1-237,male,17,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,1,1,1,0,0,1,2,0,0,1,1,1,3,1,2,0,0,
-sp-0-238,female,59,0,,,,,,,,,,,1,1,2,1,2,,,1,3,1,3,1,3,1,2,1,2,1,1,1,2,1,2,,,
-sp-3-239,female,18,1,3,,,,,1,,,,,1,0,0,0,0,0,0,1,1,1,2,1,1,1,1,1,1,1,1,1,3,0,0,1,3,
-sp-3-240,male,18,1,3,1,0,0,1,1,0,0,0,9,1,1,3,1,3,1,3,1,3,1,3,1,3,,,1,3,1,2,1,,0,0,0,0,6oct2024
-sp-1-241,male,16,1,1,1,0,0,0,0,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,1,1,1,2,0,0,1,1,0,0,0,0,0,0,7oct2024
-sp-1-242,female,16,1,1,0,0,0,1,1,1,1,1,,1,1,2,1,3,1,2,1,3,1,2,0,0,1,2,0,0,0,0,0,0,0,0,0,0,
-sp-3-243,female,18,1,3,1,0,1,1,1,1,1,0,21,1,1,2,1,2,1,2,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,6oct2024
-sp-1-244,female,17,1,1,1,,,1,1,,,,21,1,1,1,1,1,0,0,1,2,1,2,1,1,1,2,1,1,1,1,1,3,0,0,1,3,6oct2024
-sp-3-245,female,18,1,3,,,,,,,,,,1,1,1,0,0,0,0,0,1,0,0,0,0,1,2,0,0,1,3,1,2,0,0,1,2,
-sp-3-246,female,8,1,3,1,0,0,1,1,,1,0,15,1,1,2,0,0,0,0,1,3,1,2,1,2,1,2,0,0,1,1,0,0,0,0,0,0,6oct2024
-sp-3-247,female,18,1,3,,,,,,,,,,1,1,2,1,2,1,2,1,0,1,1,0,0,1,2,0,0,1,1,0,0,0,0,1,3,5oct2024
-sp-2-248,male,17,1,2,1,,,,,,,,3,1,1,3,1,3,,,1,3,1,3,1,3,1,2,,,1,2,1,3,1,2,1,2,6oct2024
-sp-0-249,male,17,1,,,,,,,,,,,1,,,,,1,2,0,2,0,0,0,0,1,2,0,0,0,0,1,3,1,1,1,2,
-sp-3-250,female,18,1,3,1,0,1,1,1,1,1,0,15,1,1,1,1,2,0,0,1,2,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,2,6oct2024
-sp-2-251,female,18,1,2,,,,,,,,,,1,1,1,1,2,1,1,1,2,1,1,1,2,1,2,0,0,1,1,1,1,0,0,1,3,
-sp-0-252,male,17,1,,1,,,1,1,0,,0,9,1,1,2,1,2,1,2,1,1,1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,1,6oct2024
-sp-3-253,male,19,1,3,1,,,,1,,,,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,3,1,3,0,0,7oct2024
-sp-1-254,male,17,1,1,1,0,0,0,1,1,1,0,21,1,1,2,1,2,1,2,1,3,1,3,1,3,1,2,1,3,1,1,1,1,1,1,1,3,5oct2024
-sp-2-255,female,18,1,2,,,,,,,,,,1,0,0,0,0,0,0,1,3,1,3,0,0,1,3,0,0,0,0,1,2,0,0,1,3,
-sp-3-256,female,18,1,3,1,0,0,1,1,0,1,0,15,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,1,3,0,0,6oct2024
-sp-1-257,female,16,1,1,,,,,,,,,,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,,,1,1,1,1,,,1,1,
-sp-3-258,female,19,1,3,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,3,
-sp-3-259,male,18,1,3,1,0,0,1,1,0,1,0,15,1,1,2,1,2,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,,0,0,0,0,7oct2024
-sp-3-260,female,19,1,3,0,0,0,1,1,,1,,,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,1,1,1,0,0,0,0,0,0,
-sp-0-261,male,17,1,,1,,,,,,,,21,1,1,2,1,2,1,2,0,2,0,0,0,0,1,2,1,1,1,1,1,1,0,0,1,3,6oct2024
-sp-2-262,female,18,1,2,1,0,1,1,1,0,0,0,9,1,0,0,1,3,0,0,1,3,1,3,1,3,0,0,1,3,1,2,1,2,1,1,1,3,6oct2024
-sp-0-263,female,26,0,,1,0,0,1,1,,0,0,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,1,7oct2024
-sp-3-264,female,17,1,3,1,0,1,1,1,1,0,0,9,1,0,0,1,1,,,1,1,1,1,1,1,1,1,0,0,1,1,1,3,0,0,0,0,6oct2024
-sp-1-265,female,16,1,1,0,0,0,1,0,,1,0,,1,1,2,1,2,1,2,1,1,1,1,1,1,1,2,0,0,0,0,0,0,0,0,0,0,
-sp-0-267,male,17,1,,1,0,0,0,1,1,1,,15,1,1,3,1,3,1,3,1,3,1,1,0,0,1,3,0,0,1,2,1,3,1,3,1,,6oct2024
-sp-1-268,male,16,1,1,,,,,,,,,,1,1,1,1,2,1,2,1,3,1,2,0,0,1,3,0,0,1,1,1,3,0,0,1,3,
-sp-2-269,male,18,1,2,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,3,0,0,0,0,
-sp-3-270,female,18,1,3,1,,0,1,1,0,1,0,21,1,1,2,1,2,0,0,1,2,1,2,1,1,1,2,0,0,1,3,1,2,0,0,1,2,6oct2024
-sp-2-271,female,18,1,2,1,0,1,1,1,,0,0,9,1,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,2,1,1,1,2,0,0,1,3,6oct2024
-sp-3-272,female,18,1,3,1,0,0,0,0,0,0,0,9,1,1,2,1,2,1,2,1,1,1,1,0,0,1,2,0,0,1,2,1,2,0,0,1,3,6oct2024
-sp-3-273,male,18,1,3,1,0,0,1,1,0,1,0,9,1,1,1,1,1,1,2,1,2,1,2,1,1,1,2,1,1,1,3,1,2,1,1,1,3,6oct2024
-sp-1-274,female,16,1,1,1,0,0,1,1,1,1,0,15,1,1,1,1,2,0,0,1,0,1,2,0,0,1,2,1,2,1,1,1,1,0,0,1,2,6oct2024
-sp-0-275,female,33,0,,1,,1,1,1,,1,,15,1,1,2,1,2,1,2,1,2,1,3,1,3,1,2,1,2,0,0,0,0,0,0,1,1,6oct2024
-sp-0-276,male,58,0,,,,,,,,,,,1,1,1,1,2,1,1,0,1,0,0,1,1,1,2,,,,,,,1,1,1,1,
-sp-1-277,male,18,1,1,1,,,,1,,,,9,1,0,0,1,2,0,0,1,3,1,2,0,0,1,2,0,0,0,0,1,3,0,0,1,3,6oct2024
-sp-1-278,female,16,1,1,,,,,,,,,,1,1,1,1,2,1,2,1,0,1,1,1,1,1,2,0,0,1,1,0,0,0,0,1,2,
-sp-3-279,female,18,1,3,,0,0,1,1,0,,0,,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,0,0,1,2,0,0,1,1,0,0,
-sp-0-280,female,54,0,,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,1,,,1,1,1,1,
-sp-1-281,female,17,1,1,1,,1,1,1,1,1,1,21,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,1,1,,1,,1,3,6oct2024
-sp-3-282,female,18,1,3,0,0,0,1,0,0,0,0,,1,1,3,1,2,1,3,0,2,0,0,0,0,1,2,1,3,1,3,1,2,0,0,1,2,
-sp-1-283,female,17,1,1,1,0,0,1,1,0,1,,9,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,,,1,3,,,1,2,6oct2024
-sp-1-284,female,16,1,1,,,,,,,,,,1,1,3,1,1,0,0,1,0,1,1,0,0,1,2,0,0,1,1,0,0,0,0,0,0,
-sp-3-285,female,18,1,3,,,,1,1,1,1,1,15,1,1,2,1,2,1,2,1,0,1,2,1,2,1,2,1,2,1,3,0,0,0,0,1,1,6oct2024
-sp-3-286,male,19,1,3,,,,,,,,,,1,0,0,1,2,1,1,1,2,1,1,0,0,1,2,0,0,1,3,1,3,0,0,1,3,
-sp-3-287,female,19,1,3,1,0,0,0,0,0,1,0,9,1,1,2,1,2,0,0,1,1,1,1,1,1,1,2,0,0,1,3,1,3,0,0,1,1,6oct2024
-sp-3-288,male,18,1,3,1,0,0,1,0,0,1,0,21,1,1,2,1,2,1,2,1,1,1,1,0,0,0,0,0,0,1,3,1,3,1,3,1,3,5oct2024
-sp-2-289,female,18,1,2,,,,,,,,,,1,1,2,1,2,1,2,1,1,1,2,1,2,1,2,0,0,1,1,1,3,0,0,1,2,
-sp-1-290,female,16,1,1,,,,,,,,,,1,1,1,0,0,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,1,1,
-sp-1-291,male,17,1,1,,,,,,,,,,1,,,,,,,,2,,,,,1,2,,,1,1,1,3,1,3,1,3,
-sp-1-292,female,16,1,1,,,,,,,,,,1,1,2,1,2,1,1,1,2,1,2,0,0,1,2,0,0,1,1,1,3,0,0,0,0,
-sp-2-293,male,16,1,2,0,0,0,1,1,0,0,0,,1,1,1,1,2,1,2,1,2,1,3,0,0,,,1,2,1,1,1,2,1,1,1,3,
-sp-3-294,female,19,1,3,0,0,0,1,1,0,1,0,,1,1,2,0,0,1,2,1,1,1,2,1,2,1,2,0,0,1,3,1,3,1,2,0,0,
-sp-3-295,female,18,1,3,0,0,0,1,1,1,1,1,,1,1,2,0,0,1,2,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,1,2,
-sp-1-296,female,16,1,1,1,0,0,0,1,0,1,0,21,1,1,1,1,2,1,2,1,1,1,1,0,0,1,1,1,1,1,1,1,2,0,0,1,3,6oct2024
-sp-1-297,female,15,1,1,1,0,0,0,0,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,1,1,3,0,0,1,1,6oct2024
-sp-3-298,male,18,1,3,1,0,0,1,0,1,0,0,9,1,1,2,1,2,1,2,1,1,1,2,1,1,1,2,1,1,1,3,1,3,0,0,0,0,6oct2024
-sp-1-299,female,15,1,1,1,0,0,1,1,0,0,0,15,1,1,1,1,1,0,0,1,2,1,2,1,2,1,2,1,2,1,1,1,3,0,0,1,1,6oct2024
-sp-3-300,female,18,1,3,1,0,1,1,1,0,1,0,15,1,1,2,0,0,1,1,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,1,1,6oct2024
-sp-3-301,male,18,1,3,,,,,1,1,,,,1,0,0,1,2,,,,2,,,,,0,0,,,1,3,1,,0,0,1,1,
-sp-3-302,female,19,1,3,1,0,0,1,1,0,1,1,15,1,1,2,1,2,0,0,1,2,1,2,0,0,1,2,0,0,1,3,0,0,0,0,1,3,6oct2024
-sp-2-303,female,17,1,2,1,0,0,1,1,,1,1,15,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,3,6oct2024
-sp-1-304,female,17,1,1,0,0,0,1,1,,1,1,,1,0,0,1,3,0,0,1,2,1,2,0,0,1,2,1,1,1,1,1,3,0,0,1,1,
-sp-3-305,female,18,1,3,1,,,,,,,,3,1,1,2,0,0,1,2,1,1,1,3,1,2,1,2,1,2,0,0,0,0,0,0,1,1,6oct2024
-sp-2-307,male,18,1,2,1,,1,1,1,,1,,21,1,1,2,1,2,1,2,1,3,1,3,1,3,1,2,0,0,1,1,1,3,0,0,1,3,5oct2024
-sp-1-308,male,16,1,1,1,0,0,1,1,0,0,0,15,1,1,2,1,2,0,0,1,3,1,3,0,0,1,2,1,2,1,1,1,3,0,0,1,2,6oct2024
-sp-1-310,female,16,1,1,1,0,1,,,0,1,1,9,1,1,2,1,2,1,2,1,0,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,3,6oct2024
-sp-3-311,female,18,1,3,0,0,0,1,1,0,1,0,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,0,0,0,0,
-sp-3-312,male,19,1,3,0,0,0,1,1,0,1,0,,1,1,2,1,2,1,2,1,3,1,2,1,2,1,2,0,0,1,3,1,3,,,1,3,
-sp-1-313,male,16,1,1,,,,,,,,,,1,0,0,1,3,0,0,1,2,1,1,0,0,1,2,0,0,1,3,1,2,1,3,1,,
-sp-1-314,female,17,1,1,,,,,,,,,,1,1,2,1,2,1,2,0,2,0,0,1,2,1,2,1,2,1,1,1,1,0,0,1,3,
-sp-3-315,male,19,1,3,1,0,1,1,1,0,0,0,9,1,1,2,1,2,0,0,1,3,1,3,0,0,1,2,1,3,1,3,1,3,0,0,1,3,6oct2024
-sp-2-317,male,18,1,2,,,,,,,,,,1,1,3,1,3,1,2,1,2,1,2,1,2,1,2,1,2,1,1,0,0,1,2,1,1,
-sp-2-318,female,17,1,2,0,0,0,1,1,0,1,0,,1,1,2,1,2,0,0,1,0,1,2,0,0,1,2,1,1,0,0,0,0,0,0,0,0,
-sp-3-319,male,18,1,3,1,0,0,0,1,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,,,1,2,,,1,3,1,3,0,0,0,0,6oct2024
-sp-2-320,male,17,1,2,1,0,0,1,1,,1,,9,1,1,3,1,3,1,3,1,2,1,2,0,0,1,2,1,2,0,0,1,3,0,0,1,3,6oct2024
-sp-3-323,male,17,1,3,1,,1,1,1,1,1,,21,1,1,1,1,2,1,1,1,2,1,3,0,0,1,2,0,0,1,3,1,3,,,1,3,5oct2024
-sp-2-324,male,17,1,2,1,0,1,1,1,0,1,,15,1,1,2,1,2,1,2,1,3,1,3,0,0,1,2,0,0,1,1,1,3,1,3,1,3,6oct2024
-sp-2-325,male,17,1,2,1,0,0,0,1,1,0,1,9,1,1,1,1,2,1,2,1,3,1,3,0,0,1,3,0,0,1,1,1,2,1,3,0,0,6oct2024
-sp-2-326,male,17,1,2,1,0,0,1,1,,1,0,9,1,0,0,1,2,0,0,0,3,0,0,0,0,1,2,0,0,0,0,1,3,1,3,0,0,6oct2024
-sp-1-329,male,16,1,1,,,,,,,,,,1,1,2,1,2,0,0,1,3,1,2,0,0,1,2,0,0,1,1,1,3,1,2,0,0,
-sp-3-330,male,18,1,3,1,0,0,0,0,,1,1,15,1,1,3,1,3,1,3,1,2,1,1,1,1,1,2,1,2,1,3,1,3,1,3,1,3,6oct2024
-sp-2-331,male,17,1,2,1,,,1,1,,,,9,1,0,0,0,0,0,0,1,2,1,2,1,2,1,2,,,1,3,1,2,1,3,,,6oct2024
-sp-3-332,female,19,1,3,1,0,1,1,1,,0,0,9,1,0,0,0,0,0,0,1,3,1,3,0,0,1,2,1,2,1,1,1,3,0,0,0,0,6oct2024
-sp-1-334,male,16,1,1,1,0,0,0,1,0,0,0,15,1,1,2,1,2,1,2,1,1,1,1,1,3,1,1,,,1,1,0,0,0,0,1,1,6oct2024
-sp-0-335,male,65,0,,1,0,0,0,0,0,0,0,9,1,1,2,1,2,1,1,1,3,1,2,1,2,1,2,1,2,1,1,,,1,2,,,6oct2024
-sp-2-336,male,17,1,2,1,0,0,0,0,1,1,1,9,1,0,0,1,2,1,2,1,2,1,2,0,0,1,3,0,0,1,2,1,3,0,0,1,,6oct2024
-sp-3-337,male,17,1,3,1,0,1,1,1,1,1,1,21,1,0,0,0,0,1,1,1,3,1,3,1,3,1,2,1,3,1,2,1,3,0,0,1,1,6oct2024
-sp-3-338,female,18,1,3,,0,0,0,1,0,,,,1,1,2,1,2,1,1,1,2,1,3,1,2,1,1,0,0,1,1,0,0,0,0,1,3,
-sp-2-339,female,17,1,2,,,,,,,,,,1,1,2,1,2,1,2,1,1,1,2,1,1,1,1,0,0,0,0,0,0,0,0,1,3,
-sp-3-340,female,18,1,3,1,,,1,,,,,9,1,1,1,0,0,1,1,1,2,1,1,1,2,1,2,1,1,1,1,1,3,0,0,0,0,6oct2024
-sp-3-341,male,18,1,3,1,0,0,0,1,0,1,0,21,1,0,0,1,2,0,0,1,3,1,3,0,0,1,2,0,0,1,3,1,3,1,3,0,0,6oct2024
-sp-0-342,male,18,1,,1,0,1,0,0,0,0,0,21,1,1,3,1,3,1,3,1,2,1,1,0,0,1,2,1,2,1,2,1,3,0,0,1,2,6oct2024
-sp-0-343,female,32,0,,,,,,,,,,,1,1,2,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,1,0,0,1,1,1,2,
-sp-3-344,female,18,1,3,1,0,0,0,1,0,0,0,15,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,,,,,,,1,3,6oct2024
-sp-2-345,male,17,1,2,1,,1,1,1,,1,,3,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,1,1,3,1,2,0,0,6oct2024
-sp-3-346,male,19,1,3,1,,1,1,,,,,3,1,1,1,1,1,1,1,1,2,1,2,1,2,,,,,1,2,1,3,,,,,6oct2024
-sp-1-347,male,17,1,1,1,0,0,1,1,0,0,0,9,1,1,1,1,2,0,0,1,3,1,3,0,0,1,2,1,2,1,3,1,3,0,0,0,0,6oct2024
-sp-3-348,female,18,1,3,1,0,0,0,1,0,0,0,9,1,1,1,0,0,1,2,1,0,1,2,0,0,1,2,0,0,1,3,0,0,0,0,1,1,6oct2024
-sp-3-349,female,18,1,3,1,,,1,,,,,9,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,,,1,1,,,,,1,3,6oct2024
-sp-0-351,male,30,0,,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
-sp-1-352,female,16,1,1,1,0,0,1,0,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,2,0,0,0,0,6oct2024
-sp-3-353,female,19,1,3,1,0,0,0,0,0,1,0,15,1,0,0,0,0,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,,,1,2,6oct2024
-sp-2-354,female,17,1,2,0,0,0,1,1,0,1,1,,1,1,2,0,0,0,0,1,0,1,3,1,1,1,3,1,2,1,1,0,0,0,0,1,2,
-sp-1-355,female,16,1,1,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,
-sp-3-356,female,19,1,3,1,0,0,1,0,,0,0,9,1,0,0,0,0,0,0,1,0,1,2,1,2,1,2,0,0,1,3,1,3,0,0,1,3,6oct2024
-sp-1-357,female,16,1,1,1,0,1,,,1,1,,9,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,1,1,3,0,0,1,3,6oct2024
-sp-3-358,female,18,1,3,0,0,0,1,1,0,1,1,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,3,0,0,0,0,1,2,
-sp-1-359,female,16,1,1,1,,,1,,,1,,3,1,1,1,1,2,0,0,1,2,1,2,1,2,1,2,1,2,1,1,0,0,0,0,1,3,6oct2024
-sp-1-360,female,16,1,1,,,,,,,,,,1,1,3,1,3,1,2,1,0,1,2,1,2,1,3,1,1,,,,,1,3,1,3,
-sp-2-361,male,16,1,2,1,0,1,1,1,1,1,0,15,1,1,3,1,3,1,1,1,1,1,1,0,0,1,1,0,0,1,1,1,3,1,3,1,3,6oct2024
-sp-2-362,male,17,1,2,,,,,,,,,,0,,,,,,,,,,,,,,,,,,,,,,,,,
-sp-1-363,male,17,1,1,,,,,,,,,,1,1,1,1,2,0,0,1,1,1,1,1,2,1,2,0,0,1,1,1,3,1,3,1,1,
-sp-1-364,female,17,1,1,,,,,,,,,,1,0,0,0,0,0,0,1,3,1,2,1,3,1,2,0,0,1,1,1,2,,,1,3,
-sp-1-365,female,16,1,1,1,,1,1,1,,,,9,1,0,0,0,0,0,0,1,3,1,3,0,0,1,2,,,0,0,1,,0,0,1,3,6oct2024
-sp-2-366,female,17,1,2,1,0,0,1,1,0,1,0,15,1,0,0,0,0,0,0,1,2,1,2,1,1,1,1,0,0,1,2,1,1,0,0,1,2,6oct2024
-sp-1-367,female,15,1,1,1,0,1,1,1,1,1,0,9,1,0,0,0,0,0,0,1,2,1,3,0,0,1,1,0,0,1,1,1,2,0,0,1,3,7oct2024
-sp-1-368,female,16,1,1,1,0,0,1,0,0,0,0,9,1,1,2,0,0,1,2,1,1,1,3,1,1,1,1,0,0,0,0,1,2,0,0,0,0,6oct2024
-sp-0-369,male,17,1,,,,,,,,,,,1,0,0,1,1,0,0,1,3,1,2,0,0,1,2,1,2,1,1,1,3,1,,1,2,
-sp-1-370,female,17,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-sp-3-372,female,19,1,3,,,,1,1,,1,,,1,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,1,2,1,2,0,0,0,0,
-sp-3-373,female,18,1,3,1,0,0,1,0,0,1,1,15,1,0,0,1,3,1,2,1,1,1,2,0,0,1,2,0,0,1,1,1,2,0,0,0,0,6oct2024
-sp-3-374,male,18,1,3,1,0,0,1,1,,1,0,9,1,1,2,1,3,1,2,1,2,1,2,1,2,1,3,1,2,1,3,1,3,0,0,1,3,6oct2024
-sp-2-375,female,17,1,2,1,0,0,1,1,0,1,0,9,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,3,6oct2024
-sp-2-376,female,17,1,2,1,,,1,1,,,,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,,,1,1,6oct2024
-sp-2-377,male,17,1,2,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,0,0,1,1,
-sp-1-378,female,17,1,1,1,,,1,1,,1,,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,0,0,,,1,2,6oct2024
-sp-2-379,female,18,1,2,1,0,0,1,0,0,0,0,15,1,0,0,0,0,0,0,1,1,1,2,0,0,0,0,0,0,1,1,0,0,1,2,1,1,6oct2024
-sp-1-381,female,16,1,1,,,,,,,,,,1,,,0,0,,,1,2,1,2,0,0,1,1,0,0,1,1,0,0,0,0,0,0,
-sp-3-382,female,18,1,3,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,0,0,
-sp-3-383,female,18,1,3,1,,,,,,,,9,1,0,0,1,1,1,1,1,2,1,2,1,2,0,0,0,0,1,3,0,0,0,0,0,0,6oct2024
-sp-2-385,male,17,1,2,,,,,,,,,,1,1,1,1,1,1,1,1,2,1,2,1,2,1,1,0,0,1,3,1,2,0,0,1,3,
-sp-1-386,female,16,1,1,1,,,1,,,,,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,,,1,3,,,1,1,6oct2024
-sp-2-387,female,17,1,2,1,0,0,1,0,0,0,0,9,1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,0,0,1,2,0,0,0,0,1,1,6oct2024
-sp-2-388,male,17,1,2,,,,,,,,,,1,1,3,1,3,1,2,1,3,1,2,0,0,0,0,0,0,1,2,1,3,0,0,1,3,
-sp-0-389,female,18,1,,1,0,0,1,0,0,0,0,9,1,0,0,1,1,1,2,1,2,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,2,6oct2024
-sp-3-390,male,18,1,3,1,,,1,0,0,0,0,9,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,1,1,1,3,,,1,1,6oct2024
-sp-2-391,male,18,1,2,1,1,1,1,1,1,1,0,15,1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,3,0,0,0,0,6oct2024
-sp-2-392,male,17,1,2,1,0,0,1,1,0,1,1,9,,,,,,,,,,,,,,,,,,,,,,,,,,6oct2024
-sp-3-393,female,19,1,3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-sp-2-394,female,17,1,2,,,1,1,1,1,1,,9,1,1,1,0,0,0,0,1,1,1,3,0,0,1,2,1,1,1,1,1,1,0,0,0,0,6oct2024
-sp-1-395,male,16,1,1,1,,1,,,,,,9,1,1,3,0,0,1,3,1,3,1,3,0,0,1,2,0,0,1,1,1,3,1,2,0,0,6oct2024
-sp-0-396,male,16,1,,,,,,,,,,,1,1,3,1,3,1,3,1,2,1,2,1,2,1,3,1,2,1,1,1,3,1,3,1,3,
-sp-0-398,male,34,0,,0,0,0,1,0,0,1,0,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,,,1,3,
-sp-2-399,male,17,1,2,0,0,0,0,1,0,1,0,,1,1,3,1,3,1,3,1,3,1,2,1,3,1,3,1,2,,,1,3,,,,,
-sp-2-400,female,17,1,2,,,,,,,,,,1,0,0,0,0,0,0,1,1,1,1,1,1,1,2,0,0,1,1,0,0,0,0,1,3,
-sp-2-401,male,17,1,2,1,0,0,0,1,1,0,0,21,1,0,0,1,2,1,2,1,3,1,3,0,0,1,2,0,0,,,1,3,1,3,,,5oct2024
-sp-2-402,male,17,1,2,1,0,0,1,0,,0,0,9,1,1,2,1,2,1,1,1,2,1,2,1,2,1,2,1,1,1,1,1,2,1,1,1,3,6oct2024
-sp-1-403,female,17,1,1,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,1,,,,,
-sp-3-404,male,19,1,3,1,0,1,1,1,,0,0,3,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,2,1,1,1,2,6oct2024
-sp-0-405,male,31,0,,,,,,,,,,,1,1,2,0,0,,,1,2,1,2,1,2,1,2,,,0,0,1,3,1,2,1,2,
-sp-1-406,male,16,1,1,,,,,,,,,,1,1,2,0,0,1,1,1,0,1,2,1,2,1,2,1,2,1,1,1,3,0,0,1,2,
-sp-3-408,female,17,1,3,,,,,,,,,,1,1,1,0,0,0,0,1,2,1,1,0,0,1,2,1,2,0,0,1,1,1,3,1,3,
-sp-1-409,female,16,1,1,1,,,,1,,1,,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,1,1,1,2,,,,,6oct2024
-sp-1-410,female,16,1,1,,,,,,,,,,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,0,1,1,1,3,,,,,
-sp-3-411,male,19,1,3,1,,,,,,,,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,,,,,7oct2024
-sp-1-412,male,17,1,1,1,0,0,1,,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,2,1,2,1,3,0,0,1,3,6oct2024
-sp-1-413,female,16,1,1,,,,,,,,,,1,0,0,0,0,0,0,0,1,1,1,1,1,1,2,0,0,1,1,0,0,0,0,1,1,
-sp-3-414,female,18,1,3,1,,,1,,,,,9,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,3,1,1,0,0,1,1,6oct2024
-sp-3-415,female,18,1,3,1,,,,,,1,1,9,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,1,1,2,,,1,1,6oct2024
-sp-0-417,female,29,0,,,,1,,,0,0,0,9,1,1,1,1,1,,,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,2,6oct2024
-sp-2-418,male,18,1,2,,,,,,,,,,1,1,2,1,2,1,2,0,0,0,0,0,0,1,2,0,0,1,1,1,3,0,0,1,3,
-sp-1-421,female,16,1,1,1,0,1,1,1,,,,3,1,1,1,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,1,1,3,0,0,1,3,6oct2024
-sp-2-422,male,17,1,2,,,,,,,,,,1,0,0,0,0,0,0,0,3,0,0,1,3,1,2,0,0,1,2,1,3,0,0,0,0,
-sp-2-423,male,18,1,2,,,,,,,,,,1,0,0,0,0,0,0,0,2,1,2,0,0,1,2,0,0,0,0,1,3,0,0,1,1,
-sp-1-424,male,15,1,1,1,0,0,0,0,,,,21,1,0,0,0,0,0,0,1,2,1,2,1,2,1,1,0,0,1,1,1,2,0,0,1,3,6oct2024
-sp-3-425,female,18,1,3,,,,,,,,,,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,3,1,2,0,0,1,2,
-sp-2-426,male,17,1,2,1,0,0,0,0,0,0,0,21,1,1,1,0,0,0,0,0,0,0,0,,,0,0,0,0,1,1,1,3,1,2,1,3,5oct2024
-sp-1-427,male,16,1,1,1,0,0,1,0,0,0,0,9,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,1,2,1,1,,,,,6oct2024
-sp-1-429,female,15,1,1,1,0,1,1,1,1,0,1,9,1,1,2,1,2,1,1,0,3,1,3,0,0,1,2,0,0,1,1,0,0,0,0,0,0,6oct2024
-sp-1-430,female,16,1,1,1,,,1,,,,,21,1,0,0,1,2,1,2,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6oct2024
-sp-3-432,female,18,1,3,1,,,1,,,,,21,1,0,0,0,0,1,1,0,2,1,3,0,0,1,2,1,2,1,3,0,0,0,0,1,3,6oct2024
-sp-3-433,female,18,1,3,1,0,1,1,1,0,0,0,21,1,1,2,1,2,0,0,0,2,1,1,1,1,1,2,0,0,1,3,1,1,0,0,1,3,6oct2024
-sp-3-434,male,19,1,3,1,,,1,,1,,,9,1,1,3,1,3,1,3,0,2,1,2,1,2,1,2,,,1,1,1,3,0,0,1,2,6oct2024
-sp-3-435,female,19,1,3,,,,,,,,,,1,1,2,1,2,1,2,0,1,1,1,0,0,1,2,0,0,1,1,1,2,0,0,1,2,
+id,sex,age,group,class,ill,diarrhoea,bloody,vomiting,abdo,nausea,fever,headache,jointpain,starthour,meal,feta,fetaD,sardines,sardinesD,eggplant,eggplantD,veal,vealD,pasta,pastaD,tomsal,tomsalD,bread,breadD,dessert,dessertD,champagne,champagneD,beer,beerD,redwine,redwineD,whitewine,whitewineD,dayonset
+sp-2-001,male,18,1,2,1,1,0,0,1,0,,0,0,9,1,1,2,1,2,0,0,1,2,1,3,1,1,1,2,1,2,1,1,1,3,0,0,0,0,6oct2024
+sp-3-003,female,18,1,3,0,,,,,,,,,,1,0,0,0,0,0,0,1,1,1,3,1,3,1,3,1,3,1,1,0,0,1,3,0,0,""
+sp-1-005,female,17,1,1,1,,,,1,1,,1,,,1,,,,,,,1,0,1,1,,,1,1,,,0,0,0,0,0,0,0,0,""
+sp-2-006,male,17,1,2,0,,,,,,,,,,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,3,1,3,1,3,1,3,""
+sp-3-007,female,18,1,3,1,1,0,0,1,1,0,1,0,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,2,0,0,1,3,6oct2024
+sp-2-008,male,180,1,2,1,1,0,0,1,0,0,0,0,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,3,0,0,1,2,7oct2024
+sp-0-009,male,16,0,,0,,,,,,,,,,1,1,2,1,2,1,2,1,1,1,2,1,2,1,2,0,0,1,2,,,1,2,1,1,""
+sp-1-010,female,15,1,1,1,0,0,0,0,1,0,1,0,,1,1,1,0,0,0,0,1,3,1,3,1,2,1,2,1,1,1,1,1,1,0,0,1,3,""
+sp-0-011,female,43,0,,1,1,,,,1,,1,1,3,1,1,2,1,2,,,1,2,1,2,1,2,1,2,,,1,1,,,1,2,,,7oct2024
+sp-1-012,male,16,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,3,1,2,1,2,,,1,1,1,2,0,0,0,0,""
+sp-2-013,male,18,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,3,0,0,1,3,""
+sp-3-015,male,18,1,3,1,1,0,0,1,1,0,1,1,21,1,0,0,0,0,0,0,1,3,1,2,0,0,1,2,0,0,1,3,1,3,0,0,0,0,6oct2024
+sp-3-016,male,20,1,3,1,1,0,0,1,0,0,0,,9,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,3,0,0,0,0,6oct2024
+sp-0-017,male,58,0,,1,1,,,,1,,,,21,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,,,1,3,,,6oct2024
+sp-3-018,male,19,1,3,1,1,0,0,1,1,0,0,0,9,1,0,0,0,0,0,0,1,2,1,3,1,1,1,2,1,2,1,3,1,3,0,0,0,0,7oct2024
+sp-0-019,male,17,1,,0,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,1,1,1,3,1,1,1,1,""
+sp-0-020,female,39,0,,1,0,0,0,1,1,0,1,,,1,1,2,1,2,1,2,1,3,1,3,1,2,1,2,1,1,1,1,,,1,2,1,1,""
+sp-2-021,male,18,1,2,1,1,1,0,1,1,,1,1,21,1,0,0,1,1,1,2,1,3,1,3,1,2,1,2,1,3,1,3,1,3,1,3,1,1,6oct2024
+sp-2-022,male,17,1,2,0,,,,,,,,,,1,1,2,0,0,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,1,1,3,""
+sp-2-023,female,17,1,2,1,1,0,1,1,1,0,1,0,9,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,1,1,1,1,0,0,1,2,6oct2024
+sp-1-024,female,16,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,1,1,1,1,1,1,3,""
+sp-1-025,female,17,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,3,1,3,1,2,1,1,0,0,1,1,1,1,1,1,1,3,""
+sp-3-026,female,19,1,3,1,0,0,0,1,1,0,1,0,,1,1,3,1,3,1,3,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,1,1,1,""
+sp-2-027,male,17,1,2,1,1,,,,,,,,15,1,0,0,0,0,,,1,2,1,2,,,1,2,0,0,,,1,3,1,1,1,1,6oct2024
+sp-3-028,female,18,1,3,1,0,0,0,1,1,1,1,,,1,0,0,1,2,0,0,1,2,1,2,0,0,1,1,0,0,1,2,0,0,0,0,0,0,""
+sp-1-029,male,16,1,1,1,1,0,0,1,1,1,1,0,15,1,1,2,1,2,1,2,1,2,1,3,1,3,1,2,1,2,0,0,1,3,0,0,1,1,6oct2024
+sp-1-030,male,16,1,1,1,1,,,,1,,1,,9,1,1,1,0,0,1,2,1,3,1,2,0,0,1,2,0,0,0,0,1,2,0,0,1,1,6oct2024
+sp-2-031,male,18,1,2,1,1,0,0,1,1,0,1,0,15,1,1,2,0,0,1,2,1,1,1,2,0,0,,,1,1,1,1,1,3,0,0,0,0,6oct2024
+sp-2-032,female,18,1,2,1,1,0,0,1,1,,0,0,9,1,1,2,0,0,0,0,1,3,1,3,0,0,1,2,1,3,1,1,1,3,,,,,6oct2024
+sp-3-033,female,19,1,3,1,1,,,1,1,0,0,0,21,1,0,0,1,1,0,0,1,1,1,1,,,0,0,,,1,2,1,3,0,0,0,0,6oct2024
+sp-2-034,female,17,1,2,1,1,,0,1,1,1,1,1,9,1,1,1,1,1,0,0,1,1,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,3,6oct2024
+sp-1-036,male,16,1,1,0,,,,,,,,,,1,1,3,0,0,0,0,1,0,1,2,1,2,1,2,0,0,1,1,1,3,0,0,0,0,""
+sp-2-037,female,17,1,2,1,0,0,0,1,0,0,0,0,,1,0,0,0,0,0,0,1,2,1,2,0,0,0,0,1,2,1,1,1,3,0,0,1,3,""
+sp-1-038,female,17,1,1,1,1,0,0,1,1,0,1,0,15,1,0,0,0,0,0,0,1,2,1,1,0,0,1,2,0,0,1,1,1,3,0,0,0,0,6oct2024
+sp-1-039,female,17,1,1,1,1,,,1,1,,,,15,1,1,1,1,2,,,1,0,1,2,0,0,1,1,0,0,1,1,1,3,0,0,1,3,6oct2024
+sp-3-040,male,19,1,3,1,1,0,1,1,1,,0,0,9,1,1,2,1,2,1,2,1,3,1,2,1,2,1,2,1,2,1,3,1,3,0,0,0,0,6oct2024
+sp-2-041,female,16,1,2,1,0,0,0,1,0,0,0,0,,1,1,1,1,2,0,0,1,2,1,2,1,2,1,2,0,0,1,1,1,1,0,0,1,1,""
+sp-2-042,male,17,1,2,1,1,0,0,0,1,1,0,0,9,1,1,1,0,0,0,0,1,3,1,2,1,2,1,2,0,0,1,1,1,3,0,0,0,0,6oct2024
+sp-0-045,female,18,1,,1,1,0,0,1,1,0,0,0,3,1,0,0,0,0,0,0,1,1,0,0,0,0,1,2,0,0,1,1,1,3,0,0,0,0,6oct2024
+sp-2-046,male,17,1,2,1,1,0,0,1,0,0,0,1,9,1,1,2,1,2,1,2,,2,,,,,1,2,1,2,1,2,1,2,1,2,1,2,6oct2024
+sp-2-047,male,18,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,1,3,1,3,0,0,1,2,0,0,0,0,1,2,0,0,0,0,""
+sp-1-048,female,17,1,1,1,,,,1,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,1,0,0,1,1,0,0,0,0,0,0,""
+sp-1-049,female,16,1,1,1,1,0,1,1,1,0,1,1,9,1,0,0,0,0,0,0,1,2,1,1,0,0,1,2,1,2,1,1,1,2,0,0,1,3,6oct2024
+sp-2-050,female,19,1,2,1,,1,,1,1,,,,9,1,1,2,1,2,0,0,1,2,1,2,1,3,1,2,,,1,1,1,3,1,1,1,3,6oct2024
+sp-3-051,female,18,1,3,1,0,0,0,1,1,0,0,0,,1,1,3,1,2,1,2,1,2,1,3,1,3,1,2,1,3,1,1,1,1,0,0,1,2,""
+sp-0-052,male,56,0,,0,,,,,,,,,,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,2,,,1,2,,,""
+sp-2-053,female,17,1,2,0,,,,,,,,,,1,1,1,0,0,0,0,1,0,1,2,0,0,1,2,0,0,1,1,1,3,0,0,1,2,""
+sp-1-054,female,16,1,1,1,1,0,0,1,1,0,1,0,21,1,0,0,0,0,0,0,1,0,1,1,1,1,1,2,0,0,1,1,0,0,0,0,0,0,6oct2024
+sp-0-055,male,18,1,,1,1,,,1,,,1,,15,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,1,1,3,1,3,0,0,0,0,6oct2024
+sp-2-056,female,18,1,2,0,,,,,,,,,,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,2,1,3,0,0,1,1,""
+sp-1-057,male,16,1,1,1,1,0,1,1,1,0,0,0,15,1,0,0,0,0,1,1,1,2,1,2,1,1,1,2,,,1,1,1,3,0,0,1,2,6oct2024
+sp-3-058,male,20,1,3,1,,,,1,,,,,21,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,1,3,,,6oct2024
+sp-3-059,female,18,1,3,1,1,0,1,1,1,,1,,9,1,1,2,1,2,1,2,1,1,1,2,1,2,1,2,0,0,1,1,1,2,0,0,1,1,6oct2024
+sp-2-060,female,18,1,2,1,1,0,0,0,1,0,1,0,15,1,1,1,0,0,1,1,1,1,1,1,1,2,1,2,1,1,1,1,1,3,0,0,1,1,7oct2024
+sp-1-062,male,16,1,1,1,1,0,0,1,1,0,1,0,15,1,1,2,1,2,1,2,1,2,1,2,,,1,2,,,0,0,1,3,0,0,1,3,6oct2024
+sp-3-063,female,19,1,3,1,1,,0,1,1,,1,0,9,1,1,1,0,0,0,0,1,2,1,2,1,2,1,2,0,0,1,3,1,1,0,0,1,2,6oct2024
+sp-1-064,male,15,1,1,0,,,,,,,,,,1,0,0,1,1,0,0,1,3,0,0,0,0,1,2,0,0,1,1,,,,,1,3,""
+sp-1-066,male,16,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,3,0,0,1,3,""
+sp-1-067,female,17,1,1,1,0,0,0,0,1,1,1,0,,1,1,2,1,2,1,2,1,1,1,2,1,1,1,2,0,0,1,1,1,1,,,1,1,""
+sp-1-068,female,17,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,2,1,1,1,2,0,0,1,1,""
+sp-2-069,female,16,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,1,1,1,2,0,0,1,1,0,0,1,1,1,3,0,0,1,1,""
+sp-1-070,male,16,1,1,0,,,,,,,,,,1,1,2,1,2,1,3,1,3,0,0,0,0,1,2,0,0,0,0,1,3,0,0,1,3,""
+sp-1-072,female,17,1,1,1,1,1,0,1,1,1,1,1,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,1,1,,,,,1,3,6oct2024
+sp-2-073,male,18,1,2,1,0,0,0,1,1,0,1,0,,1,0,0,0,0,0,0,1,2,0,0,0,0,1,3,0,0,1,1,1,3,0,0,0,0,""
+sp-1-075,male,15,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,0,1,2,1,2,1,2,1,2,0,0,0,0,0,0,0,0,""
+sp-1-076,female,17,1,1,1,1,,,,,,1,,9,1,0,0,0,0,0,0,1,3,1,1,0,0,1,1,0,0,1,2,1,1,,,1,3,6oct2024
+sp-1-077,female,17,1,1,1,,,,1,1,,1,,,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0,0,1,3,""
+sp-3-078,female,18,1,3,0,,,,,,,,,,1,1,1,1,1,0,0,1,2,1,2,1,2,1,2,1,2,1,1,1,3,0,0,1,2,""
+sp-2-079,female,18,1,2,1,1,0,1,1,1,,,0,9,1,1,1,0,0,0,0,1,2,1,2,1,2,1,2,0,0,1,2,1,2,0,0,1,2,6oct2024
+sp-1-080,female,16,1,1,1,1,0,0,1,1,0,1,0,9,1,0,0,1,1,1,2,1,1,1,1,0,0,1,2,0,0,1,2,1,3,0,0,1,3,6oct2024
+sp-3-081,male,18,1,3,1,1,0,0,0,1,0,0,0,9,1,1,2,1,2,1,2,1,2,1,3,1,2,1,2,1,2,1,3,1,3,0,0,1,2,6oct2024
+sp-2-082,female,16,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,3,1,1,0,0,0,0,1,1,1,3,0,0,1,1,""
+sp-1-083,male,16,1,1,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,""
+sp-2-084,male,17,1,2,1,1,0,1,1,1,0,1,0,15,1,1,1,0,0,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,3,0,0,0,0,6oct2024
+sp-1-085,female,16,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,1,1,1,0,0,1,1,1,1,1,1,1,2,0,0,1,3,""
+sp-2-086,female,17,1,2,1,1,0,1,1,1,0,0,0,9,1,1,1,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,1,1,1,0,0,1,2,6oct2024
+sp-1-087,female,16,1,1,0,,,,,,,,,,1,1,2,1,2,0,0,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,0,0,""
+sp-1-088,female,17,1,1,0,,,,,,,,,,1,1,1,1,2,1,1,1,2,1,1,1,1,0,0,0,0,1,1,0,0,0,0,1,3,""
+sp-2-089,female,18,1,2,1,,,,1,,,,,,1,1,1,1,1,0,0,1,2,0,0,0,0,1,2,0,0,1,1,1,3,0,0,0,0,""
+sp-0-090,male,16,1,,0,,,,,,,,,,1,1,2,1,2,1,2,1,3,1,3,0,0,1,2,1,3,1,1,0,0,0,0,0,0,""
+sp-3-091,female,19,1,3,1,0,0,0,1,0,0,0,0,,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,3,0,0,0,0,0,0,""
+sp-2-092,female,16,1,2,1,1,,,1,,,,,15,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,1,3,6oct2024
+sp-3-093,female,19,1,3,1,0,0,1,1,1,,1,0,21,1,1,1,1,1,1,1,1,1,0,0,1,1,1,2,1,1,1,3,0,0,0,0,0,0,5oct2024
+sp-2-094,female,16,1,2,1,,,,1,,,1,,,1,1,2,,,,,1,2,1,2,,,1,2,1,2,,,,,,,1,3,""
+sp-1-095,female,16,1,1,1,1,0,0,1,0,0,1,0,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,1,2,1,3,1,3,0,0,6oct2024
+sp-1-096,male,16,1,1,0,,,,,,,,,,1,1,3,1,3,1,3,1,3,1,3,1,3,,,1,3,,,1,2,,,,,""
+sp-3-097,female,17,1,3,1,1,0,0,1,1,0,1,0,9,1,1,3,0,0,1,2,1,2,1,3,1,2,1,2,1,3,1,3,1,3,0,0,1,1,6oct2024
+sp-1-099,female,17,1,1,0,,,,,,,,,,1,1,2,1,2,1,1,1,2,1,2,1,2,1,2,1,2,1,1,1,1,1,1,1,3,""
+sp-2-101,male,17,1,2,1,1,0,0,1,0,0,0,0,15,1,1,2,1,3,0,0,1,3,1,3,0,0,1,2,1,2,1,1,1,3,0,0,0,0,6oct2024
+sp-2-102,female,18,1,2,1,1,0,0,0,1,,1,,15,1,0,0,1,2,0,0,1,2,1,2,1,2,1,2,0,0,1,3,1,3,0,0,1,1,6oct2024
+sp-0-103,male,16,1,,0,,,,,,,,,,1,1,1,1,1,1,1,1,1,1,1,,,1,1,1,1,0,0,1,1,0,0,1,2,""
+sp-3-104,female,18,1,3,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,""
+sp-0-105,male,18,1,,1,1,,,,1,,1,,15,1,1,2,1,2,1,2,1,3,1,3,1,2,,,1,2,1,1,1,3,0,0,0,0,6oct2024
+sp-1-106,female,16,1,1,1,1,0,0,1,1,,1,,9,1,1,2,1,2,0,0,1,2,1,3,1,3,1,1,1,3,0,0,1,1,0,0,1,3,6oct2024
+sp-1-107,female,17,1,1,0,,,,,,,,,,0,,,,,,,,,,,,,,,,,,,,,,,,,""
+sp-1-108,male,16,1,1,1,1,0,0,0,0,0,0,0,21,1,0,0,0,0,1,2,1,2,1,2,0,0,1,2,0,0,1,1,1,3,0,0,1,1,6oct2024
+sp-0-109,female,17,1,,1,1,,,1,,,,1,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,1,1,1,1,0,0,1,3,6oct2024
+sp-2-110,female,17,1,2,1,1,,,1,,,1,,9,1,1,1,1,1,0,0,1,0,1,1,1,1,1,1,0,0,1,1,1,1,,,1,2,6oct2024
+sp-1-111,male,17,1,1,1,1,0,1,1,1,0,1,1,15,1,1,1,1,3,0,0,1,3,1,2,0,0,1,2,1,2,1,3,1,3,1,1,1,3,6oct2024
+sp-2-112,male,17,1,2,1,0,0,0,1,0,0,0,0,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,1,1,1,3,0,0,1,2,""
+sp-0-113,female,17,1,,0,,,,,,,,,,1,1,2,1,2,0,0,1,2,1,2,1,2,1,2,1,2,1,2,1,3,0,0,1,2,""
+sp-1-114,male,16,1,1,1,1,0,0,1,0,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,3,1,3,1,3,1,1,7oct2024
+sp-3-115,male,18,1,3,1,0,0,0,1,1,0,1,0,,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,0,0,1,3,1,3,0,0,0,0,""
+sp-1-116,male,17,1,1,1,1,,1,,1,,,,9,1,1,2,0,0,1,2,1,3,1,3,0,0,1,3,0,0,1,3,1,3,0,0,1,2,6oct2024
+sp-3-117,male,18,1,3,0,0,0,0,0,0,0,0,0,,1,0,0,1,2,1,1,1,3,1,2,1,1,1,2,0,0,1,3,1,3,0,0,1,1,""
+sp-1-118,male,16,1,1,1,0,0,0,1,,0,0,0,,1,1,2,1,2,1,2,1,3,1,3,1,1,1,2,1,3,1,1,1,3,1,1,1,1,""
+sp-1-119,male,17,1,1,1,1,0,0,1,0,0,0,1,21,1,1,1,1,2,,,1,3,1,3,0,0,1,2,0,0,1,3,1,2,0,0,1,3,6oct2024
+sp-0-120,male,17,1,,1,1,0,1,1,1,,1,,9,1,1,2,1,2,1,2,1,3,1,1,0,0,1,1,1,3,1,1,1,3,0,0,1,1,6oct2024
+sp-1-121,male,16,1,1,1,0,0,0,1,0,,1,0,,1,0,0,0,0,0,0,1,3,1,1,0,0,1,3,0,0,1,1,1,3,0,0,0,0,""
+sp-3-122,female,18,1,3,1,0,0,0,1,1,1,1,0,,1,1,1,0,0,1,2,1,2,1,3,0,0,1,2,1,3,1,3,1,3,0,0,0,0,""
+sp-1-123,male,16,1,1,0,,,,,,,,,,1,0,0,0,0,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,3,0,0,1,3,""
+sp-1-124,female,16,1,1,1,1,,1,1,,,1,,9,1,0,0,0,0,0,0,1,1,0,0,0,0,1,2,0,0,1,1,0,0,1,1,1,1,7oct2024
+sp-2-125,female,18,1,2,1,1,0,0,1,1,0,0,0,9,1,1,2,1,2,,,1,0,1,1,1,1,1,2,0,0,1,2,1,3,0,0,1,3,6oct2024
+sp-1-126,male,17,1,1,1,0,0,0,0,0,0,1,0,,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,1,1,3,0,0,0,0,""
+sp-3-127,female,18,1,3,1,1,0,0,1,1,,,,15,1,1,2,1,2,,,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,0,0,6oct2024
+sp-2-128,female,18,1,2,1,0,0,0,1,1,0,0,0,,1,1,1,0,0,1,1,1,1,1,2,1,2,1,2,0,0,1,1,1,2,0,0,1,2,""
+sp-1-129,female,17,1,1,1,1,0,0,1,1,0,1,0,9,1,1,3,1,3,1,3,1,3,1,3,1,2,1,2,0,0,1,1,1,1,0,0,1,1,6oct2024
+sp-1-131,female,16,1,1,1,1,0,0,1,1,0,0,0,9,1,0,0,0,0,1,1,1,0,1,3,1,2,0,0,1,1,1,1,0,0,0,0,1,3,6oct2024
+sp-3-132,male,19,1,3,0,,,,,,,,,,1,0,0,0,0,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,0,0,0,0,""
+sp-1-134,female,16,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,1,1,""
+sp-3-135,male,20,1,3,1,1,,0,1,0,,0,0,15,1,1,3,1,2,0,0,1,2,1,1,1,1,1,2,1,2,1,3,1,3,0,0,1,3,6oct2024
+sp-2-136,female,17,1,2,1,0,0,1,1,0,0,0,0,9,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,1,2,1,3,0,0,1,3,6oct2024
+sp-1-137,female,16,1,1,1,1,,,1,1,,,,21,1,1,1,0,0,0,0,1,1,1,3,0,0,1,2,0,0,1,1,1,3,0,0,1,1,6oct2024
+sp-3-138,female,19,1,3,1,0,0,0,0,1,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,""
+sp-1-139,male,16,1,1,0,,,,,,,,,,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,,,1,3,5oct2024
+sp-1-140,male,16,1,1,0,,,,,,,,,,1,1,2,1,2,0,0,1,3,1,3,1,2,1,2,1,2,1,1,1,2,,,1,3,""
+sp-1-141,female,16,1,1,0,,,,,,,,,,1,1,1,1,2,0,0,0,1,0,0,0,0,1,1,0,0,1,1,1,3,0,0,0,0,""
+sp-3-142,male,18,1,3,1,1,0,0,0,1,0,1,0,15,1,1,2,1,2,0,0,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,1,2,6oct2024
+sp-3-143,male,18,1,3,1,1,0,0,1,1,0,0,0,9,1,1,3,1,3,1,3,1,2,1,2,1,2,1,3,1,2,1,1,1,3,0,0,0,0,6oct2024
+sp-3-144,male,18,1,3,1,1,1,0,1,0,1,0,0,15,1,0,0,1,2,0,0,1,3,1,3,0,0,0,0,0,0,1,1,1,3,0,0,1,2,6oct2024
+sp-1-145,female,15,1,1,0,,,,,,,,,,1,1,3,1,2,1,3,1,2,1,2,0,0,1,2,0,0,0,0,0,0,0,0,1,1,""
+sp-2-146,female,18,1,2,1,1,0,0,1,,0,0,0,15,1,1,2,1,2,0,0,1,2,1,2,1,2,1,2,0,0,1,1,1,1,0,0,1,2,6oct2024
+sp-1-147,male,16,1,1,1,1,0,1,1,1,0,0,0,21,1,1,2,1,2,0,0,1,3,1,3,1,2,0,0,0,0,1,1,1,3,0,0,1,3,6oct2024
+sp-2-148,female,17,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,2,1,2,1,2,0,0,1,1,1,3,1,1,1,3,""
+sp-3-149,female,18,1,3,1,1,0,1,1,1,0,1,0,15,1,1,3,1,3,1,3,1,2,1,2,1,1,1,3,0,0,1,2,1,1,0,0,1,2,6oct2024
+sp-1-150,male,16,1,1,0,,,,,,,,,,1,1,3,1,3,1,3,1,3,1,2,1,2,1,2,1,3,1,1,0,0,0,0,0,0,""
+sp-3-151,female,18,1,3,1,1,0,0,1,1,,1,1,9,1,1,2,1,2,1,2,1,,1,1,0,0,1,2,0,0,1,1,1,3,0,0,1,2,6oct2024
+sp-3-152,female,19,1,3,1,1,0,0,1,0,0,0,0,9,1,1,2,1,2,1,2,1,1,1,3,1,3,1,2,1,3,1,2,0,0,0,0,0,0,6oct2024
+sp-3-154,male,18,1,3,1,1,0,0,1,0,1,1,0,15,1,1,2,1,2,0,0,1,3,1,1,0,0,1,2,0,0,1,1,1,3,0,0,0,0,6oct2024
+sp-3-155,male,19,1,3,1,1,,1,1,1,,1,0,3,1,1,2,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,1,1,2,1,1,1,1,6oct2024
+sp-3-156,male,18,1,3,1,0,0,1,1,1,1,1,0,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,0,0,0,0,1,2,6oct2024
+sp-2-157,female,18,1,2,1,1,,,1,,,,,9,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,0,0,1,1,0,0,0,0,1,3,6oct2024
+sp-2-158,male,17,1,2,1,1,0,1,1,1,,1,0,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,3,1,1,0,0,6oct2024
+sp-1-159,female,16,1,1,1,1,,1,,,,1,,15,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,6oct2024
+sp-1-160,male,17,1,1,1,0,0,0,1,1,0,,,,1,0,0,1,2,1,2,1,3,1,1,1,3,1,2,0,0,1,1,1,3,0,0,0,0,""
+sp-2-161,female,19,1,2,1,1,0,0,1,,0,1,0,15,1,1,2,0,0,0,0,1,1,1,2,1,1,1,2,1,1,1,1,0,0,0,0,1,1,6oct2024
+sp-3-162,female,18,1,3,1,0,0,0,1,1,0,,0,,1,1,2,1,1,,,1,2,1,2,1,2,1,2,0,0,0,0,1,3,0,0,1,3,""
+sp-1-163,female,16,1,1,0,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,2,0,0,1,1,0,0,1,1,1,3,1,1,0,0,""
+sp-1-164,female,16,1,1,1,1,0,1,1,1,0,1,0,15,1,1,1,1,2,1,1,1,1,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,3,7oct2024
+sp-3-165,male,18,1,3,1,1,,1,1,1,1,0,0,3,1,1,2,1,2,1,2,1,3,1,3,1,3,1,2,0,0,1,3,1,3,0,0,0,0,6oct2024
+sp-1-166,female,16,1,1,1,0,0,1,1,1,,1,0,15,1,1,2,1,2,1,2,1,3,1,2,1,2,1,2,1,1,1,1,,,,,1,3,6oct2024
+sp-2-167,female,16,1,2,0,,,,,,,,,,1,1,2,1,1,0,0,1,,1,2,1,2,1,2,,,1,1,1,2,0,0,1,2,""
+sp-3-168,female,19,1,3,1,1,0,0,1,1,,0,0,21,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,0,0,0,0,1,1,5oct2024
+sp-3-169,female,18,1,3,0,,,,,,,,,,1,1,1,1,2,1,1,1,3,1,3,1,2,1,2,1,2,1,3,1,2,0,0,1,1,""
+sp-3-170,female,19,1,3,0,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,3,1,3,1,2,1,3,1,1,0,0,0,0,1,3,""
+sp-2-172,male,17,1,2,0,,,,,,,,,,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,1,2,""
+sp-2-173,female,17,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,0,2,0,0,1,2,1,2,0,0,0,0,0,0,0,0,1,2,""
+sp-1-174,female,15,1,1,1,1,0,0,1,1,0,1,0,15,1,1,3,1,2,0,0,0,3,0,0,0,0,1,2,0,0,1,1,1,2,0,0,1,1,6oct2024
+sp-1-175,female,16,1,1,0,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,1,3,1,1,0,0,1,,""
+sp-1-176,male,17,1,1,0,,,,,,,,,,1,1,3,1,3,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,2,0,0,1,1,""
+sp-3-177,female,18,1,3,0,,,,,,,,,,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,2,1,3,,,1,1,""
+sp-1-178,male,16,1,1,0,,,,,,,,,,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,1,1,1,0,0,1,3,""
+sp-2-179,female,18,1,2,0,,,,,,,,,,1,0,0,0,0,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,3,1,1,1,2,""
+sp-1-180,male,16,1,1,1,1,0,,1,1,1,1,0,15,1,0,0,1,3,1,3,1,3,1,3,1,3,1,1,0,0,1,1,1,3,0,0,1,3,6oct2024
+sp-0-181,female,17,1,,0,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,3,0,0,1,3,""
+sp-1-182,female,17,1,1,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,""
+sp-0-183,female,16,1,,1,1,0,1,1,1,0,1,0,9,1,0,0,1,2,0,0,1,2,1,3,0,0,1,2,,,1,1,0,0,0,0,0,0,6oct2024
+sp-1-184,male,16,1,1,1,1,0,0,1,,0,0,0,15,1,1,2,1,2,0,0,1,3,1,2,1,1,1,2,1,3,1,1,1,3,1,2,1,1,6oct2024
+sp-3-185,male,18,1,3,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,3,1,2,0,0,""
+sp-1-186,female,16,1,1,1,1,0,0,1,1,0,1,0,21,1,1,1,1,2,0,0,1,2,1,2,0,0,1,2,0,0,0,0,1,2,0,0,1,2,6oct2024
+sp-1-187,female,17,1,1,0,,,,,,,,,,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,,,0,0,1,2,0,0,1,1,""
+sp-1-188,female,17,1,1,1,1,,,1,,1,1,1,9,1,1,3,1,2,1,3,1,1,1,3,1,2,1,2,1,2,1,1,1,2,,,1,3,6oct2024
+sp-2-189,male,17,1,2,1,,,1,1,,,1,,15,1,1,2,0,0,1,2,1,2,1,2,1,2,1,3,,,1,3,1,3,1,2,,,6oct2024
+sp-3-190,female,19,1,3,1,1,0,1,1,1,0,0,0,15,1,1,1,1,2,1,2,1,2,1,2,0,0,1,1,0,0,1,3,1,3,0,0,1,3,6oct2024
+sp-1-191,male,17,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,3,0,0,1,2,0,0,1,3,1,3,0,0,1,,""
+sp-3-192,male,19,1,3,1,0,0,0,1,0,0,1,0,,1,0,0,1,2,0,0,1,2,1,2,1,2,1,1,0,0,1,3,1,3,0,0,0,0,""
+sp-2-193,female,17,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,0,2,0,0,0,0,1,2,0,0,1,1,0,0,0,0,1,3,""
+sp-1-194,female,16,1,1,1,1,0,0,1,1,,,,15,1,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,3,0,0,1,3,0,0,1,3,6oct2024
+sp-3-195,male,17,1,3,1,1,0,1,1,1,1,1,0,15,1,1,2,1,2,0,0,1,2,1,2,0,0,1,2,1,2,1,3,1,3,0,0,1,3,6oct2024
+sp-2-196,female,17,1,2,0,,,,,,,,,,1,1,1,0,0,1,2,1,2,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,3,""
+sp-2-197,female,17,1,2,0,,,,,,,,,,0,,,,,,,,,,,,,,,,,,,,,,,,,""
+sp-3-198,female,19,1,3,1,0,0,1,1,1,0,1,0,3,1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,7oct2024
+sp-2-199,female,17,1,2,1,0,0,1,1,1,,1,0,15,1,1,1,0,0,0,0,1,2,1,1,0,0,1,2,0,0,1,1,0,0,0,0,0,0,6oct2024
+sp-1-200,male,16,1,1,0,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,1,0,0,1,2,0,0,0,0,1,3,0,0,0,0,""
+sp-3-201,female,18,1,3,1,1,,1,1,1,,1,,15,1,0,0,0,0,0,0,1,3,1,2,1,3,0,0,0,0,,,,,,,1,1,6oct2024
+sp-1-202,female,17,1,1,1,1,,,,,,,,9,,,,,,,,,,,,,,,,,,,,,,,,,,6oct2024
+sp-2-203,female,17,1,2,1,1,0,0,1,1,1,1,0,9,1,0,0,0,0,0,0,1,2,1,3,1,2,1,2,0,0,0,0,1,3,1,1,1,2,6oct2024
+sp-1-204,female,16,1,1,1,0,0,0,1,1,1,1,0,,1,1,3,1,2,1,3,1,3,1,3,1,3,1,2,0,0,1,1,1,1,0,0,1,1,""
+sp-1-205,male,16,1,1,1,1,,1,,1,,,,9,1,0,0,1,2,0,0,1,3,1,3,1,2,1,2,0,0,1,1,1,2,0,0,1,3,6oct2024
+sp-3-206,female,18,1,3,1,1,,,,,,,,15,1,0,0,,,,,1,2,1,2,,,1,2,1,2,1,1,1,1,,,,,6oct2024
+sp-1-207,female,16,1,1,0,,,,,,,,,,1,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,1,1,0,0,0,0,1,3,""
+sp-1-208,female,16,1,1,0,,,,,,,,,,0,1,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,1,1,1,3,0,0,1,3,""
+sp-1-209,male,15,1,1,1,1,0,1,1,1,,1,0,21,1,1,3,1,3,1,3,1,3,1,3,1,2,1,2,1,3,1,2,,,,,1,1,5oct2024
+sp-1-210,female,16,1,1,0,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,2,1,2,1,1,0,0,0,0,0,0,0,0,0,0,""
+sp-3-211,female,19,1,3,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,0,0,1,2,""
+sp-1-213,female,16,1,1,0,,,,,,,,,,1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,1,1,3,1,1,1,3,""
+sp-2-214,male,17,1,2,0,,,,,,,,,,1,1,1,0,0,0,0,1,2,1,2,0,0,1,2,1,3,0,0,1,3,0,0,1,2,""
+sp-2-215,male,18,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,1,2,1,2,0,0,0,0,0,0,1,3,0,0,1,3,1,3,""
+sp-2-216,male,18,1,2,1,1,0,1,1,1,0,1,0,9,1,1,3,0,0,1,2,1,2,1,3,0,0,1,2,0,0,1,1,1,3,1,1,1,3,6oct2024
+sp-1-217,female,16,1,1,1,1,0,1,1,1,1,0,0,9,1,1,1,0,0,1,2,1,2,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,3,6oct2024
+sp-1-219,male,16,1,1,1,1,0,0,1,1,0,1,0,9,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,1,2,6oct2024
+sp-2-220,male,18,1,2,1,0,0,0,1,0,0,1,0,,1,1,2,1,2,1,1,1,3,1,3,1,2,1,2,1,2,1,1,1,3,0,0,0,0,""
+sp-2-221,female,17,1,2,1,,,,,,,1,,,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,1,1,3,0,0,1,2,""
+sp-1-222,male,16,1,1,1,1,,,1,,,,,9,1,1,2,0,0,1,2,1,2,1,3,0,0,1,1,0,0,1,1,1,2,0,0,1,2,6oct2024
+sp-2-223,male,17,1,2,1,1,0,0,1,0,1,1,,9,1,1,1,1,2,0,0,1,3,1,2,0,0,1,2,0,0,1,1,1,3,1,2,1,2,6oct2024
+sp-3-224,female,18,1,3,1,1,1,0,1,1,0,1,1,,,,,,,,,,,,,,,,,,,,,,,,,,,""
+sp-2-225,male,18,1,2,1,1,0,0,1,0,0,1,0,9,1,0,0,0,0,0,0,1,0,1,2,0,0,1,2,0,0,1,1,0,0,1,1,1,2,6oct2024
+sp-3-226,male,19,1,3,1,1,,1,,,,,,9,1,1,2,1,2,1,2,1,3,1,3,1,2,1,2,0,0,1,1,1,3,0,0,1,3,6oct2024
+sp-1-227,male,16,1,1,1,1,0,0,1,0,0,0,0,9,1,1,1,1,2,0,0,1,1,1,1,0,0,1,1,1,1,1,2,1,3,0,0,0,0,6oct2024
+sp-2-228,female,18,1,2,0,,,,,,,,,,1,1,2,0,0,0,0,0,0,0,0,0,0,1,2,0,0,1,1,1,2,0,0,1,3,""
+sp-3-229,female,18,1,3,1,1,0,0,1,0,1,0,,15,1,1,1,1,2,0,0,1,2,1,3,0,0,1,2,1,2,1,2,0,0,0,0,1,1,6oct2024
+sp-2-230,female,18,1,2,1,0,0,0,1,1,0,0,0,,1,1,1,1,2,0,0,1,2,1,1,1,1,1,2,0,0,1,1,1,2,0,0,1,2,""
+sp-1-231,female,16,1,1,0,,,,,,,,,,1,1,1,1,3,0,0,1,2,1,1,0,0,1,2,0,0,1,1,1,3,0,0,1,2,""
+sp-0-232,female,18,1,,1,1,0,1,1,1,1,0,0,15,1,0,0,0,0,0,0,1,1,1,2,1,1,1,2,0,0,0,0,1,3,0,0,1,2,6oct2024
+sp-2-233,female,17,1,2,1,1,,,1,,,,,21,1,0,0,1,1,0,0,1,3,1,3,1,2,1,2,0,0,1,2,1,1,0,0,1,3,6oct2024
+sp-2-234,male,17,1,2,1,1,0,0,0,0,0,0,0,21,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,1,1,1,0,0,0,0,6oct2024
+sp-2-235,female,17,1,2,1,0,0,0,1,,0,1,0,,1,1,2,1,2,0,0,0,1,0,0,0,0,1,2,0,0,1,1,1,3,1,3,0,0,""
+sp-2-236,male,18,1,2,1,1,0,0,0,0,0,1,0,9,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,,,1,3,,,1,1,6oct2024
+sp-1-237,male,17,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,1,1,1,0,0,1,2,0,0,1,1,1,3,1,2,0,0,""
+sp-0-238,female,59,0,,0,,,,,,,,,,1,1,2,1,2,,,1,3,1,3,1,3,1,2,1,2,1,1,1,2,1,2,,,""
+sp-3-239,female,18,1,3,1,,,,,1,,,,,1,0,0,0,0,0,0,1,1,1,2,1,1,1,1,1,1,1,1,1,3,0,0,1,3,""
+sp-3-240,male,18,1,3,1,1,0,0,1,1,0,0,0,9,1,1,3,1,3,1,3,1,3,1,3,1,3,,,1,3,1,2,1,,0,0,0,0,6oct2024
+sp-1-241,male,16,1,1,1,1,0,0,0,0,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,1,1,1,2,0,0,1,1,0,0,0,0,0,0,7oct2024
+sp-1-242,female,16,1,1,1,0,0,0,1,1,1,1,1,,1,1,2,1,3,1,2,1,3,1,2,0,0,1,2,0,0,0,0,0,0,0,0,0,0,""
+sp-3-243,female,18,1,3,1,1,0,1,1,1,1,1,0,21,1,1,2,1,2,1,2,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,6oct2024
+sp-1-244,female,17,1,1,1,1,,,1,1,,,,21,1,1,1,1,1,0,0,1,2,1,2,1,1,1,2,1,1,1,1,1,3,0,0,1,3,6oct2024
+sp-3-245,female,18,1,3,0,,,,,,,,,,1,1,1,0,0,0,0,0,1,0,0,0,0,1,2,0,0,1,3,1,2,0,0,1,2,""
+sp-3-246,female,8,1,3,1,1,0,0,1,1,,1,0,15,1,1,2,0,0,0,0,1,3,1,2,1,2,1,2,0,0,1,1,0,0,0,0,0,0,6oct2024
+sp-3-247,female,18,1,3,0,,,,,,,,,,1,1,2,1,2,1,2,1,0,1,1,0,0,1,2,0,0,1,1,0,0,0,0,1,3,5oct2024
+sp-2-248,male,17,1,2,1,1,,,,,,,,3,1,1,3,1,3,,,1,3,1,3,1,3,1,2,,,1,2,1,3,1,2,1,2,6oct2024
+sp-0-249,male,17,1,,0,,,,,,,,,,1,,,,,1,2,0,2,0,0,0,0,1,2,0,0,0,0,1,3,1,1,1,2,""
+sp-3-250,female,18,1,3,1,1,0,1,1,1,1,1,0,15,1,1,1,1,2,0,0,1,2,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,2,6oct2024
+sp-2-251,female,18,1,2,0,,,,,,,,,,1,1,1,1,2,1,1,1,2,1,1,1,2,1,2,0,0,1,1,1,1,0,0,1,3,""
+sp-0-252,male,17,1,,1,1,,,1,1,0,,0,9,1,1,2,1,2,1,2,1,1,1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,1,6oct2024
+sp-3-253,male,19,1,3,1,1,,,,1,,,,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,3,1,3,0,0,7oct2024
+sp-1-254,male,17,1,1,1,1,0,0,0,1,1,1,0,21,1,1,2,1,2,1,2,1,3,1,3,1,3,1,2,1,3,1,1,1,1,1,1,1,3,5oct2024
+sp-2-255,female,18,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,1,3,1,3,0,0,1,3,0,0,0,0,1,2,0,0,1,3,""
+sp-3-256,female,18,1,3,1,1,0,0,1,1,0,1,0,15,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,0,1,3,0,0,6oct2024
+sp-1-257,female,16,1,1,0,,,,,,,,,,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,,,1,1,1,1,,,1,1,""
+sp-3-258,female,19,1,3,0,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,3,""
+sp-3-259,male,18,1,3,1,1,0,0,1,1,0,1,0,15,1,1,2,1,2,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,,0,0,0,0,7oct2024
+sp-3-260,female,19,1,3,1,0,0,0,1,1,,1,,,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,1,1,1,0,0,0,0,0,0,""
+sp-0-261,male,17,1,,1,1,,,,,,,,21,1,1,2,1,2,1,2,0,2,0,0,0,0,1,2,1,1,1,1,1,1,0,0,1,3,6oct2024
+sp-2-262,female,18,1,2,1,1,0,1,1,1,0,0,0,9,1,0,0,1,3,0,0,1,3,1,3,1,3,0,0,1,3,1,2,1,2,1,1,1,3,6oct2024
+sp-0-263,female,26,0,,1,1,0,0,1,1,,0,0,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,1,7oct2024
+sp-3-264,female,17,1,3,1,1,0,1,1,1,1,0,0,9,1,0,0,1,1,,,1,1,1,1,1,1,1,1,0,0,1,1,1,3,0,0,0,0,6oct2024
+sp-1-265,female,16,1,1,1,0,0,0,1,0,,1,0,,1,1,2,1,2,1,2,1,1,1,1,1,1,1,2,0,0,0,0,0,0,0,0,0,0,""
+sp-0-267,male,17,1,,1,1,0,0,0,1,1,1,,15,1,1,3,1,3,1,3,1,3,1,1,0,0,1,3,0,0,1,2,1,3,1,3,1,,6oct2024
+sp-1-268,male,16,1,1,0,,,,,,,,,,1,1,1,1,2,1,2,1,3,1,2,0,0,1,3,0,0,1,1,1,3,0,0,1,3,""
+sp-2-269,male,18,1,2,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,3,0,0,0,0,""
+sp-3-270,female,18,1,3,1,1,,0,1,1,0,1,0,21,1,1,2,1,2,0,0,1,2,1,2,1,1,1,2,0,0,1,3,1,2,0,0,1,2,6oct2024
+sp-2-271,female,18,1,2,1,1,0,1,1,1,,0,0,9,1,1,2,1,2,1,2,1,2,1,2,1,1,1,2,1,2,1,1,1,2,0,0,1,3,6oct2024
+sp-3-272,female,18,1,3,1,1,0,0,0,0,0,0,0,9,1,1,2,1,2,1,2,1,1,1,1,0,0,1,2,0,0,1,2,1,2,0,0,1,3,6oct2024
+sp-3-273,male,18,1,3,1,1,0,0,1,1,0,1,0,9,1,1,1,1,1,1,2,1,2,1,2,1,1,1,2,1,1,1,3,1,2,1,1,1,3,6oct2024
+sp-1-274,female,16,1,1,1,1,0,0,1,1,1,1,0,15,1,1,1,1,2,0,0,1,0,1,2,0,0,1,2,1,2,1,1,1,1,0,0,1,2,6oct2024
+sp-0-275,female,33,0,,1,1,,1,1,1,,1,,15,1,1,2,1,2,1,2,1,2,1,3,1,3,1,2,1,2,0,0,0,0,0,0,1,1,6oct2024
+sp-0-276,male,58,0,,0,,,,,,,,,,1,1,1,1,2,1,1,0,1,0,0,1,1,1,2,,,,,,,1,1,1,1,""
+sp-1-277,male,18,1,1,1,1,,,,1,,,,9,1,0,0,1,2,0,0,1,3,1,2,0,0,1,2,0,0,0,0,1,3,0,0,1,3,6oct2024
+sp-1-278,female,16,1,1,0,,,,,,,,,,1,1,1,1,2,1,2,1,0,1,1,1,1,1,2,0,0,1,1,0,0,0,0,1,2,""
+sp-3-279,female,18,1,3,1,,0,0,1,1,0,,0,,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,0,0,1,2,0,0,1,1,0,0,""
+sp-0-280,female,54,0,,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,1,,,1,1,1,1,""
+sp-1-281,female,17,1,1,1,1,,1,1,1,1,1,1,21,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,1,1,,1,,1,3,6oct2024
+sp-3-282,female,18,1,3,1,0,0,0,1,0,0,0,0,,1,1,3,1,2,1,3,0,2,0,0,0,0,1,2,1,3,1,3,1,2,0,0,1,2,""
+sp-1-283,female,17,1,1,1,1,0,0,1,1,0,1,,9,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,,,1,3,,,1,2,6oct2024
+sp-1-284,female,16,1,1,0,,,,,,,,,,1,1,3,1,1,0,0,1,0,1,1,0,0,1,2,0,0,1,1,0,0,0,0,0,0,""
+sp-3-285,female,18,1,3,1,,,,1,1,1,1,1,15,1,1,2,1,2,1,2,1,0,1,2,1,2,1,2,1,2,1,3,0,0,0,0,1,1,6oct2024
+sp-3-286,male,19,1,3,0,,,,,,,,,,1,0,0,1,2,1,1,1,2,1,1,0,0,1,2,0,0,1,3,1,3,0,0,1,3,""
+sp-3-287,female,19,1,3,1,1,0,0,0,0,0,1,0,9,1,1,2,1,2,0,0,1,1,1,1,1,1,1,2,0,0,1,3,1,3,0,0,1,1,6oct2024
+sp-3-288,male,18,1,3,1,1,0,0,1,0,0,1,0,21,1,1,2,1,2,1,2,1,1,1,1,0,0,0,0,0,0,1,3,1,3,1,3,1,3,5oct2024
+sp-2-289,female,18,1,2,0,,,,,,,,,,1,1,2,1,2,1,2,1,1,1,2,1,2,1,2,0,0,1,1,1,3,0,0,1,2,""
+sp-1-290,female,16,1,1,0,,,,,,,,,,1,1,1,0,0,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,3,0,0,1,1,""
+sp-1-291,male,17,1,1,0,,,,,,,,,,1,,,,,,,,2,,,,,1,2,,,1,1,1,3,1,3,1,3,""
+sp-1-292,female,16,1,1,0,,,,,,,,,,1,1,2,1,2,1,1,1,2,1,2,0,0,1,2,0,0,1,1,1,3,0,0,0,0,""
+sp-2-293,male,16,1,2,1,0,0,0,1,1,0,0,0,,1,1,1,1,2,1,2,1,2,1,3,0,0,,,1,2,1,1,1,2,1,1,1,3,""
+sp-3-294,female,19,1,3,1,0,0,0,1,1,0,1,0,,1,1,2,0,0,1,2,1,1,1,2,1,2,1,2,0,0,1,3,1,3,1,2,0,0,""
+sp-3-295,female,18,1,3,1,0,0,0,1,1,1,1,1,,1,1,2,0,0,1,2,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,1,2,""
+sp-1-296,female,16,1,1,1,1,0,0,0,1,0,1,0,21,1,1,1,1,2,1,2,1,1,1,1,0,0,1,1,1,1,1,1,1,2,0,0,1,3,6oct2024
+sp-1-297,female,15,1,1,1,1,0,0,0,0,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,1,1,3,0,0,1,1,6oct2024
+sp-3-298,male,18,1,3,1,1,0,0,1,0,1,0,0,9,1,1,2,1,2,1,2,1,1,1,2,1,1,1,2,1,1,1,3,1,3,0,0,0,0,6oct2024
+sp-1-299,female,15,1,1,1,1,0,0,1,1,0,0,0,15,1,1,1,1,1,0,0,1,2,1,2,1,2,1,2,1,2,1,1,1,3,0,0,1,1,6oct2024
+sp-3-300,female,18,1,3,1,1,0,1,1,1,0,1,0,15,1,1,2,0,0,1,1,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,1,1,6oct2024
+sp-3-301,male,18,1,3,1,,,,,1,1,,,,1,0,0,1,2,,,,2,,,,,0,0,,,1,3,1,,0,0,1,1,""
+sp-3-302,female,19,1,3,1,1,0,0,1,1,0,1,1,15,1,1,2,1,2,0,0,1,2,1,2,0,0,1,2,0,0,1,3,0,0,0,0,1,3,6oct2024
+sp-2-303,female,17,1,2,1,1,0,0,1,1,,1,1,15,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,3,6oct2024
+sp-1-304,female,17,1,1,1,0,0,0,1,1,,1,1,,1,0,0,1,3,0,0,1,2,1,2,0,0,1,2,1,1,1,1,1,3,0,0,1,1,""
+sp-3-305,female,18,1,3,1,1,,,,,,,,3,1,1,2,0,0,1,2,1,1,1,3,1,2,1,2,1,2,0,0,0,0,0,0,1,1,6oct2024
+sp-2-307,male,18,1,2,1,1,,1,1,1,,1,,21,1,1,2,1,2,1,2,1,3,1,3,1,3,1,2,0,0,1,1,1,3,0,0,1,3,5oct2024
+sp-1-308,male,16,1,1,1,1,0,0,1,1,0,0,0,15,1,1,2,1,2,0,0,1,3,1,3,0,0,1,2,1,2,1,1,1,3,0,0,1,2,6oct2024
+sp-1-310,female,16,1,1,1,1,0,1,,,0,1,1,9,1,1,2,1,2,1,2,1,0,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,3,6oct2024
+sp-3-311,female,18,1,3,1,0,0,0,1,1,0,1,0,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,0,0,0,0,""
+sp-3-312,male,19,1,3,1,0,0,0,1,1,0,1,0,,1,1,2,1,2,1,2,1,3,1,2,1,2,1,2,0,0,1,3,1,3,,,1,3,""
+sp-1-313,male,16,1,1,0,,,,,,,,,,1,0,0,1,3,0,0,1,2,1,1,0,0,1,2,0,0,1,3,1,2,1,3,1,,""
+sp-1-314,female,17,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,0,2,0,0,1,2,1,2,1,2,1,1,1,1,0,0,1,3,""
+sp-3-315,male,19,1,3,1,1,0,1,1,1,0,0,0,9,1,1,2,1,2,0,0,1,3,1,3,0,0,1,2,1,3,1,3,1,3,0,0,1,3,6oct2024
+sp-2-317,male,18,1,2,0,,,,,,,,,,1,1,3,1,3,1,2,1,2,1,2,1,2,1,2,1,2,1,1,0,0,1,2,1,1,""
+sp-2-318,female,17,1,2,1,0,0,0,1,1,0,1,0,,1,1,2,1,2,0,0,1,0,1,2,0,0,1,2,1,1,0,0,0,0,0,0,0,0,""
+sp-3-319,male,18,1,3,1,1,0,0,0,1,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,,,1,2,,,1,3,1,3,0,0,0,0,6oct2024
+sp-2-320,male,17,1,2,1,1,0,0,1,1,,1,,9,1,1,3,1,3,1,3,1,2,1,2,0,0,1,2,1,2,0,0,1,3,0,0,1,3,6oct2024
+sp-3-323,male,17,1,3,1,1,,1,1,1,1,1,,21,1,1,1,1,2,1,1,1,2,1,3,0,0,1,2,0,0,1,3,1,3,,,1,3,5oct2024
+sp-2-324,male,17,1,2,1,1,0,1,1,1,0,1,,15,1,1,2,1,2,1,2,1,3,1,3,0,0,1,2,0,0,1,1,1,3,1,3,1,3,6oct2024
+sp-2-325,male,17,1,2,1,1,0,0,0,1,1,0,1,9,1,1,1,1,2,1,2,1,3,1,3,0,0,1,3,0,0,1,1,1,2,1,3,0,0,6oct2024
+sp-2-326,male,17,1,2,1,1,0,0,1,1,,1,0,9,1,0,0,1,2,0,0,0,3,0,0,0,0,1,2,0,0,0,0,1,3,1,3,0,0,6oct2024
+sp-1-329,male,16,1,1,0,,,,,,,,,,1,1,2,1,2,0,0,1,3,1,2,0,0,1,2,0,0,1,1,1,3,1,2,0,0,""
+sp-3-330,male,18,1,3,1,1,0,0,0,0,,1,1,15,1,1,3,1,3,1,3,1,2,1,1,1,1,1,2,1,2,1,3,1,3,1,3,1,3,6oct2024
+sp-2-331,male,17,1,2,1,1,,,1,1,,,,9,1,0,0,0,0,0,0,1,2,1,2,1,2,1,2,,,1,3,1,2,1,3,,,6oct2024
+sp-3-332,female,19,1,3,1,1,0,1,1,1,,0,0,9,1,0,0,0,0,0,0,1,3,1,3,0,0,1,2,1,2,1,1,1,3,0,0,0,0,6oct2024
+sp-1-334,male,16,1,1,1,1,0,0,0,1,0,0,0,15,1,1,2,1,2,1,2,1,1,1,1,1,3,1,1,,,1,1,0,0,0,0,1,1,6oct2024
+sp-0-335,male,65,0,,1,1,0,0,0,0,0,0,0,9,1,1,2,1,2,1,1,1,3,1,2,1,2,1,2,1,2,1,1,,,1,2,,,6oct2024
+sp-2-336,male,17,1,2,1,1,0,0,0,0,1,1,1,9,1,0,0,1,2,1,2,1,2,1,2,0,0,1,3,0,0,1,2,1,3,0,0,1,,6oct2024
+sp-3-337,male,17,1,3,1,1,0,1,1,1,1,1,1,21,1,0,0,0,0,1,1,1,3,1,3,1,3,1,2,1,3,1,2,1,3,0,0,1,1,6oct2024
+sp-3-338,female,18,1,3,1,,0,0,0,1,0,,,,1,1,2,1,2,1,1,1,2,1,3,1,2,1,1,0,0,1,1,0,0,0,0,1,3,""
+sp-2-339,female,17,1,2,0,,,,,,,,,,1,1,2,1,2,1,2,1,1,1,2,1,1,1,1,0,0,0,0,0,0,0,0,1,3,""
+sp-3-340,female,18,1,3,1,1,,,1,,,,,9,1,1,1,0,0,1,1,1,2,1,1,1,2,1,2,1,1,1,1,1,3,0,0,0,0,6oct2024
+sp-3-341,male,18,1,3,1,1,0,0,0,1,0,1,0,21,1,0,0,1,2,0,0,1,3,1,3,0,0,1,2,0,0,1,3,1,3,1,3,0,0,6oct2024
+sp-0-342,male,18,1,,1,1,0,1,0,0,0,0,0,21,1,1,3,1,3,1,3,1,2,1,1,0,0,1,2,1,2,1,2,1,3,0,0,1,2,6oct2024
+sp-0-343,female,32,0,,0,,,,,,,,,,1,1,2,1,2,1,2,1,3,1,3,1,3,1,3,1,3,1,1,0,0,1,1,1,2,""
+sp-3-344,female,18,1,3,1,1,0,0,0,1,0,0,0,15,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,,,,,,,1,3,6oct2024
+sp-2-345,male,17,1,2,1,1,,1,1,1,,1,,3,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,1,1,3,1,2,0,0,6oct2024
+sp-3-346,male,19,1,3,1,1,,1,1,,,,,3,1,1,1,1,1,1,1,1,2,1,2,1,2,,,,,1,2,1,3,,,,,6oct2024
+sp-1-347,male,17,1,1,1,1,0,0,1,1,0,0,0,9,1,1,1,1,2,0,0,1,3,1,3,0,0,1,2,1,2,1,3,1,3,0,0,0,0,6oct2024
+sp-3-348,female,18,1,3,1,1,0,0,0,1,0,0,0,9,1,1,1,0,0,1,2,1,0,1,2,0,0,1,2,0,0,1,3,0,0,0,0,1,1,6oct2024
+sp-3-349,female,18,1,3,1,1,,,1,,,,,9,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,,,1,1,,,,,1,3,6oct2024
+sp-0-351,male,30,0,,0,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,""
+sp-1-352,female,16,1,1,1,1,0,0,1,0,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,2,0,0,0,0,6oct2024
+sp-3-353,female,19,1,3,1,1,0,0,0,0,0,1,0,15,1,0,0,0,0,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,,,1,2,6oct2024
+sp-2-354,female,17,1,2,1,0,0,0,1,1,0,1,1,,1,1,2,0,0,0,0,1,0,1,3,1,1,1,3,1,2,1,1,0,0,0,0,1,2,""
+sp-1-355,female,16,1,1,0,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,""
+sp-3-356,female,19,1,3,1,1,0,0,1,0,,0,0,9,1,0,0,0,0,0,0,1,0,1,2,1,2,1,2,0,0,1,3,1,3,0,0,1,3,6oct2024
+sp-1-357,female,16,1,1,1,1,0,1,,,1,1,,9,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,1,1,3,0,0,1,3,6oct2024
+sp-3-358,female,18,1,3,1,0,0,0,1,1,0,1,1,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,3,0,0,0,0,1,2,""
+sp-1-359,female,16,1,1,1,1,,,1,,,1,,3,1,1,1,1,2,0,0,1,2,1,2,1,2,1,2,1,2,1,1,0,0,0,0,1,3,6oct2024
+sp-1-360,female,16,1,1,0,,,,,,,,,,1,1,3,1,3,1,2,1,0,1,2,1,2,1,3,1,1,,,,,1,3,1,3,""
+sp-2-361,male,16,1,2,1,1,0,1,1,1,1,1,0,15,1,1,3,1,3,1,1,1,1,1,1,0,0,1,1,0,0,1,1,1,3,1,3,1,3,6oct2024
+sp-2-362,male,17,1,2,0,,,,,,,,,,0,,,,,,,,,,,,,,,,,,,,,,,,,""
+sp-1-363,male,17,1,1,0,,,,,,,,,,1,1,1,1,2,0,0,1,1,1,1,1,2,1,2,0,0,1,1,1,3,1,3,1,1,""
+sp-1-364,female,17,1,1,0,,,,,,,,,,1,0,0,0,0,0,0,1,3,1,2,1,3,1,2,0,0,1,1,1,2,,,1,3,""
+sp-1-365,female,16,1,1,1,1,,1,1,1,,,,9,1,0,0,0,0,0,0,1,3,1,3,0,0,1,2,,,0,0,1,,0,0,1,3,6oct2024
+sp-2-366,female,17,1,2,1,1,0,0,1,1,0,1,0,15,1,0,0,0,0,0,0,1,2,1,2,1,1,1,1,0,0,1,2,1,1,0,0,1,2,6oct2024
+sp-1-367,female,15,1,1,1,1,0,1,1,1,1,1,0,9,1,0,0,0,0,0,0,1,2,1,3,0,0,1,1,0,0,1,1,1,2,0,0,1,3,7oct2024
+sp-1-368,female,16,1,1,1,1,0,0,1,0,0,0,0,9,1,1,2,0,0,1,2,1,1,1,3,1,1,1,1,0,0,0,0,1,2,0,0,0,0,6oct2024
+sp-0-369,male,17,1,,0,,,,,,,,,,1,0,0,1,1,0,0,1,3,1,2,0,0,1,2,1,2,1,1,1,3,1,,1,2,""
+sp-1-370,female,17,1,1,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,""
+sp-3-372,female,19,1,3,1,,,,1,1,,1,,,1,0,0,0,0,0,0,0,0,0,0,0,0,1,2,0,0,1,2,1,2,0,0,0,0,""
+sp-3-373,female,18,1,3,1,1,0,0,1,0,0,1,1,15,1,0,0,1,3,1,2,1,1,1,2,0,0,1,2,0,0,1,1,1,2,0,0,0,0,6oct2024
+sp-3-374,male,18,1,3,1,1,0,0,1,1,,1,0,9,1,1,2,1,3,1,2,1,2,1,2,1,2,1,3,1,2,1,3,1,3,0,0,1,3,6oct2024
+sp-2-375,female,17,1,2,1,1,0,0,1,1,0,1,0,9,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,3,6oct2024
+sp-2-376,female,17,1,2,1,1,,,1,1,,,,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,,,1,1,6oct2024
+sp-2-377,male,17,1,2,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,0,0,1,1,""
+sp-1-378,female,17,1,1,1,1,,,1,1,,1,,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,0,0,,,1,2,6oct2024
+sp-2-379,female,18,1,2,1,1,0,0,1,0,0,0,0,15,1,0,0,0,0,0,0,1,1,1,2,0,0,0,0,0,0,1,1,0,0,1,2,1,1,6oct2024
+sp-1-381,female,16,1,1,0,,,,,,,,,,1,,,0,0,,,1,2,1,2,0,0,1,1,0,0,1,1,0,0,0,0,0,0,""
+sp-3-382,female,18,1,3,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,0,0,1,1,1,3,0,0,0,0,""
+sp-3-383,female,18,1,3,1,1,,,,,,,,9,1,0,0,1,1,1,1,1,2,1,2,1,2,0,0,0,0,1,3,0,0,0,0,0,0,6oct2024
+sp-2-385,male,17,1,2,0,,,,,,,,,,1,1,1,1,1,1,1,1,2,1,2,1,2,1,1,0,0,1,3,1,2,0,0,1,3,""
+sp-1-386,female,16,1,1,1,1,,,1,,,,,9,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,,,1,3,,,1,1,6oct2024
+sp-2-387,female,17,1,2,1,1,0,0,1,0,0,0,0,9,1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,0,0,1,2,0,0,0,0,1,1,6oct2024
+sp-2-388,male,17,1,2,0,,,,,,,,,,1,1,3,1,3,1,2,1,3,1,2,0,0,0,0,0,0,1,2,1,3,0,0,1,3,""
+sp-0-389,female,18,1,,1,1,0,0,1,0,0,0,0,9,1,0,0,1,1,1,2,1,2,1,2,0,0,1,2,0,0,1,1,0,0,0,0,1,2,6oct2024
+sp-3-390,male,18,1,3,1,1,,,1,0,0,0,0,9,1,0,0,0,0,0,0,1,2,1,2,0,0,1,2,0,0,1,1,1,3,,,1,1,6oct2024
+sp-2-391,male,18,1,2,1,1,1,1,1,1,1,1,0,15,1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,3,0,0,0,0,6oct2024
+sp-2-392,male,17,1,2,1,1,0,0,1,1,0,1,1,9,,,,,,,,,,,,,,,,,,,,,,,,,,6oct2024
+sp-3-393,female,19,1,3,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,""
+sp-2-394,female,17,1,2,1,,,1,1,1,1,1,,9,1,1,1,0,0,0,0,1,1,1,3,0,0,1,2,1,1,1,1,1,1,0,0,0,0,6oct2024
+sp-1-395,male,16,1,1,1,1,,1,,,,,,9,1,1,3,0,0,1,3,1,3,1,3,0,0,1,2,0,0,1,1,1,3,1,2,0,0,6oct2024
+sp-0-396,male,16,1,,0,,,,,,,,,,1,1,3,1,3,1,3,1,2,1,2,1,2,1,3,1,2,1,1,1,3,1,3,1,3,""
+sp-0-398,male,34,0,,1,0,0,0,1,0,0,1,0,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,,,1,3,""
+sp-2-399,male,17,1,2,1,0,0,0,0,1,0,1,0,,1,1,3,1,3,1,3,1,3,1,2,1,3,1,3,1,2,,,1,3,,,,,""
+sp-2-400,female,17,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,1,1,1,1,1,1,1,2,0,0,1,1,0,0,0,0,1,3,""
+sp-2-401,male,17,1,2,1,1,0,0,0,1,1,0,0,21,1,0,0,1,2,1,2,1,3,1,3,0,0,1,2,0,0,,,1,3,1,3,,,5oct2024
+sp-2-402,male,17,1,2,1,1,0,0,1,0,,0,0,9,1,1,2,1,2,1,1,1,2,1,2,1,2,1,2,1,1,1,1,1,2,1,1,1,3,6oct2024
+sp-1-403,female,17,1,1,0,,,,,,,,,,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,1,,,,,""
+sp-3-404,male,19,1,3,1,1,0,1,1,1,,0,0,3,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,2,1,1,1,2,6oct2024
+sp-0-405,male,31,0,,0,,,,,,,,,,1,1,2,0,0,,,1,2,1,2,1,2,1,2,,,0,0,1,3,1,2,1,2,""
+sp-1-406,male,16,1,1,0,,,,,,,,,,1,1,2,0,0,1,1,1,0,1,2,1,2,1,2,1,2,1,1,1,3,0,0,1,2,""
+sp-3-408,female,17,1,3,0,,,,,,,,,,1,1,1,0,0,0,0,1,2,1,1,0,0,1,2,1,2,0,0,1,1,1,3,1,3,""
+sp-1-409,female,16,1,1,1,1,,,,1,,1,,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,,,1,1,1,2,,,,,6oct2024
+sp-1-410,female,16,1,1,0,,,,,,,,,,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,0,0,1,1,1,3,,,,,""
+sp-3-411,male,19,1,3,1,1,,,,,,,,15,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,3,1,3,,,,,7oct2024
+sp-1-412,male,17,1,1,1,1,0,0,1,,0,0,0,9,1,1,2,1,2,1,2,1,2,1,2,0,0,0,0,1,2,1,2,1,3,0,0,1,3,6oct2024
+sp-1-413,female,16,1,1,0,,,,,,,,,,1,0,0,0,0,0,0,0,1,1,1,1,1,1,2,0,0,1,1,0,0,0,0,1,1,""
+sp-3-414,female,18,1,3,1,1,,,1,,,,,9,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,3,1,1,0,0,1,1,6oct2024
+sp-3-415,female,18,1,3,1,1,,,,,,1,1,9,1,1,2,1,2,1,2,1,2,1,2,0,0,1,2,1,2,1,1,1,2,,,1,1,6oct2024
+sp-0-417,female,29,0,,1,,,1,,,0,0,0,9,1,1,1,1,1,,,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,2,6oct2024
+sp-2-418,male,18,1,2,0,,,,,,,,,,1,1,2,1,2,1,2,0,0,0,0,0,0,1,2,0,0,1,1,1,3,0,0,1,3,""
+sp-1-421,female,16,1,1,1,1,0,1,1,1,,,,3,1,1,1,1,2,1,2,1,2,1,2,0,0,1,2,0,0,1,1,1,3,0,0,1,3,6oct2024
+sp-2-422,male,17,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,0,3,0,0,1,3,1,2,0,0,1,2,1,3,0,0,0,0,""
+sp-2-423,male,18,1,2,0,,,,,,,,,,1,0,0,0,0,0,0,0,2,1,2,0,0,1,2,0,0,0,0,1,3,0,0,1,1,""
+sp-1-424,male,15,1,1,1,1,0,0,0,0,,,,21,1,0,0,0,0,0,0,1,2,1,2,1,2,1,1,0,0,1,1,1,2,0,0,1,3,6oct2024
+sp-3-425,female,18,1,3,0,,,,,,,,,,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,3,1,2,0,0,1,2,""
+sp-2-426,male,17,1,2,1,1,0,0,0,0,0,0,0,21,1,1,1,0,0,0,0,0,0,0,0,,,0,0,0,0,1,1,1,3,1,2,1,3,5oct2024
+sp-1-427,male,16,1,1,1,1,0,0,1,0,0,0,0,9,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,1,2,1,1,,,,,6oct2024
+sp-1-429,female,15,1,1,1,1,0,1,1,1,1,0,1,9,1,1,2,1,2,1,1,0,3,1,3,0,0,1,2,0,0,1,1,0,0,0,0,0,0,6oct2024
+sp-1-430,female,16,1,1,1,1,,,1,,,,,21,1,0,0,1,2,1,2,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6oct2024
+sp-3-432,female,18,1,3,1,1,,,1,,,,,21,1,0,0,0,0,1,1,0,2,1,3,0,0,1,2,1,2,1,3,0,0,0,0,1,3,6oct2024
+sp-3-433,female,18,1,3,1,1,0,1,1,1,0,0,0,21,1,1,2,1,2,0,0,0,2,1,1,1,1,1,2,0,0,1,3,1,1,0,0,1,3,6oct2024
+sp-3-434,male,19,1,3,1,1,,,1,,1,,,9,1,1,3,1,3,1,3,0,2,1,2,1,2,1,2,,,1,1,1,3,0,0,1,2,6oct2024
+sp-3-435,female,19,1,3,0,,,,,,,,,,1,1,2,1,2,1,2,0,1,1,1,0,0,1,2,0,0,1,1,1,2,0,0,1,2,""
diff --git a/data/spetses_school_codebook.xlsx b/data/spetses_school_codebook.xlsx
index 3c83793..45dfed9 100644
Binary files a/data/spetses_school_codebook.xlsx and b/data/spetses_school_codebook.xlsx differ
diff --git a/docs/.nojekyll b/docs/.nojekyll
deleted file mode 100644
index e69de29..0000000
diff --git a/docs/Case_definition.html b/docs/Case_definition.html
index 8c5afef..8afab09 100644
--- a/docs/Case_definition.html
+++ b/docs/Case_definition.html
@@ -2,12 +2,12 @@
There are some “column types” you would like to modify because either R needs some specific types of data when working with certain variables, or because it will be easier for you to visualise and interpret the data. For example, the variable “group” is encoded as 0 and 1, when you create a table later on, you don’t want to see 0’s and 1’s because that doesn’t mean anything. It is better to change this variable to a factor, with explicit labels, so they actually mean something when they come out in your table.
-
+
You can use mutate to modify the type of the following variables:
-
+
Table 1: Variable types to modify
@@ -1742,24 +1913,30 @@
3.4. Modify variab
mutate(), as.factor()
-
All the clinical symptom variables
+
ill
integer
-
logical
-
mutate(across()), as.logical()
+
factor
+
mutate(), as.factor()
-
All the food variables representing the amount of specific foods eaten (those finishing with a capital “D”)
+
All the clinical symptom variables
integer
factor
mutate(across()), as.factor()
+
All the food variables representing the amount of specific foods eaten (those finishing with a capital “D”)
+
integer
+
factor
+
mutate(across()), as.factor()
+
+
dayonset
character
date
lubridate::dmy()
-
+
starthour and dayonset together
integer (starthour)
date (dayonset)
@@ -1768,16 +1945,17 @@
3.4. Modify variab
-
-
Sex, group and class
-
Let’s start transforming one-by-one the first two variables in the table: sex, and class.
+
+
Sex, class and ill
+
Let’s start transforming one-by-one the first three variables in the table: sex, class and ill.
For the variables that are food doses, we will show you how to first create a vector of names, following by using mutate(across(all_of( ))) on this vector.
-
-Code
+
+Show the code
# Create a vector with all the food variables representing the amount of specific foods items eaten (those finishing with a capital "D")# One way of doing it:food_dose <- copdata %>%
- dplyr::select(
+select(ends_with("D", ignore.case =FALSE)) %>%names()# Another way of doing it:
-# food_dose <- c("fetaD", "sardinesD", "eggplantD", "moussakaD",
-# "orzoD", "greeksalD", "dessertD", "breadD",
+# food_dose <- c("fetaD", "sardinesD", "eggplantD", "pastaD",
+# "vealD", "greeksalD", "dessertD", "breadD", # "champagneD", "beerD", "redwineD", "whitewineD")copdata <- copdata %>%
- dplyr::mutate(
+mutate(# food dose variablesacross(.cols =all_of(food_dose), .fns =~as.factor(.)))
@@ -1838,7 +2016,7 @@
Symptoms and F
-
The tilde (~) above is used to apply the transformation as.logical(.) to each selected column, which in our case is either all columns included in food_items and food_dose.
+
The tilde (~) above is used to apply the transformation as.factor(.) to each selected column, which in our case is either all columns included in food_items and food_dose.
@@ -1863,32 +2041,32 @@
Date and time vari
-
+
You can use lubridate::dmy() to mutate the dayonset variable into a date variable. Note that we are using the function dmy() because dates are formatted as day, then month (abbreviated character string), then year (i.e. “12nov2006”).
-
-Code
+
+Show the code
# Have a look at how the data is storedhead(copdata$dayonset)
[1] "6oct2024" "" "" "" "6oct2024" "7oct2024"
-
-Code
+
+Show the code
class(copdata$dayonset)
[1] "character"
-
-Code
+
+Show the code
# Update copdata:copdata <- copdata %>%# Change column to date class:
- dplyr::mutate(
+mutate(dayonset = lubridate::dmy(dayonset))# Check class of updated column:
@@ -1897,8 +2075,8 @@
Date and time vari
[1] "Date"
-
-Code
+
+Show the code
# Have a look at your data now:head(copdata$dayonset)
@@ -1911,15 +2089,14 @@
Date and time vari
Before we proceed, it would be wise to check if any respondents have a value for dayonset but not starthour, or vice versa. The lubridate date-time conversion functions do not have an explicit argument for dealing with missing values, but the truncated = … argument can help prevent spurious date-times being derived from a date-time combination where one value is missing.
We can check if we have any missing values by cross-tabulating starthour with dayonset:
a) Create a summary table with symptoms stratified by case definition, and present an overall column as well. You could use tabyl() or gtsummary::tbl_summary(). You can find further information about gtsummary in The Epidemiologist R handbook section on gtsummary.
-
-Code
+
+Show the code
# Create summary table:tabsymptoms <- copdata %>%# Select person characteristics to summarise:
@@ -728,24 +750,23 @@
tabsymptoms
-
-
-
-
-
-
-
-
Characteristic
-
Overall
-N = 3771
-
Non-case
-N = 1611
-
Case
-N = 2161
-
-
-
-
Diarrhoea
-
-
-
-
FALSE
-
46 (18%)
-
40 (100%)
-
6 (2.8%)
-
TRUE
-
206 (82%)
-
0 (0%)
-
206 (97%)
-
Dysentary
-
-
-
-
FALSE
-
189 (97%)
-
42 (100%)
-
147 (97%)
-
TRUE
-
5 (2.6%)
-
0 (0%)
-
5 (3.3%)
-
Vomiting
-
-
-
-
FALSE
-
149 (69%)
-
42 (100%)
-
107 (62%)
-
TRUE
-
66 (31%)
-
0 (0%)
-
66 (38%)
-
Abdominal pain
-
-
-
-
FALSE
-
35 (14%)
-
6 (12%)
-
29 (15%)
-
TRUE
-
207 (86%)
-
44 (88%)
-
163 (85%)
-
Nausea
-
-
-
-
FALSE
-
55 (25%)
-
12 (26%)
-
43 (24%)
-
TRUE
-
169 (75%)
-
34 (74%)
-
135 (76%)
-
Fever
-
-
-
-
FALSE
-
127 (74%)
-
32 (80%)
-
95 (73%)
-
TRUE
-
44 (26%)
-
8 (20%)
-
36 (27%)
-
Headache
-
-
-
-
FALSE
-
83 (38%)
-
11 (25%)
-
72 (41%)
-
TRUE
-
137 (62%)
-
33 (75%)
-
104 (59%)
-
Joint pain
-
-
-
-
FALSE
-
159 (85%)
-
32 (84%)
-
127 (85%)
-
TRUE
-
29 (15%)
-
6 (16%)
-
23 (15%)
-
-
-
-
-
1 n (%)
-
-
+
+
+
+
+
+
+
+
+
+
+
Characteristic
+
OverallN = 3771
+
Non-caseN = 1611
+
CaseN = 2161
+
+
+
+
+
Diarrhoea
+
+
+
+
+
+
+
+
+
0
+
46 (18%)
+
40 (100%)
+
6 (2.8%)
+
+
+
1
+
206 (82%)
+
0 (0%)
+
206 (97%)
+
+
+
Dysentary
+
+
+
+
+
+
+
+
+
0
+
189 (97%)
+
42 (100%)
+
147 (97%)
+
+
+
1
+
5 (2.6%)
+
0 (0%)
+
5 (3.3%)
+
+
+
Vomiting
+
+
+
+
+
+
+
+
+
0
+
149 (69%)
+
42 (100%)
+
107 (62%)
+
+
+
1
+
66 (31%)
+
0 (0%)
+
66 (38%)
+
+
+
Abdominal pain
+
+
+
+
+
+
+
+
+
0
+
35 (14%)
+
6 (12%)
+
29 (15%)
+
+
+
1
+
207 (86%)
+
44 (88%)
+
163 (85%)
+
+
+
Nausea
+
+
+
+
+
+
+
+
+
0
+
55 (25%)
+
12 (26%)
+
43 (24%)
+
+
+
1
+
169 (75%)
+
34 (74%)
+
135 (76%)
+
+
+
Fever
+
+
+
+
+
+
+
+
+
0
+
127 (74%)
+
32 (80%)
+
95 (73%)
+
+
+
1
+
44 (26%)
+
8 (20%)
+
36 (27%)
+
+
+
Headache
+
+
+
+
+
+
+
+
+
0
+
83 (38%)
+
11 (25%)
+
72 (41%)
+
+
+
1
+
137 (62%)
+
33 (75%)
+
104 (59%)
+
+
+
Joint pain
+
+
+
+
+
+
+
+
+
0
+
159 (85%)
+
32 (84%)
+
127 (85%)
+
+
+
1
+
29 (15%)
+
6 (16%)
+
23 (15%)
+
+
+
+
1 n (%)
+
+
+
+
@@ -1329,8 +1431,8 @@
b) Extra - Bar plot of symptoms stratified by case definition.
-
-Code
+
+Show the code
# Create list of symptom variables:symptoms <-c("diarrhoea", "bloody",
@@ -1342,8 +1444,8 @@
"jointpain")
# Create nice labels for case definition:
-caselabs <- ggplot2::as_labeller(c(`FALSE`="Non-case",
-`TRUE`="Case"))
+caselabs <- ggplot2::as_labeller(c("0"="Non-case",
+"1"="Case"))# Select variables and cases:symptom_bar <- copdata %>%# Select symptom columns:
@@ -1355,7 +1457,7 @@
names_to ="Symptoms",
values_drop_na =TRUE) %>%# Keep only TRUE values:
-filter(value ==TRUE) %>%
+filter(value =="1") %>%# Group by symptoms and case:group_by(Symptoms, case) %>%
@@ -1384,13 +1486,17 @@
-Code
+
+Show the code
# Print plot:symptom_bar
-
+
+
+
+
+
@@ -1400,8 +1506,8 @@
3.7 Attack proportions<
a) Calculate the overall attack proportions (percentage of cases among the total observed individuals). You could use tabyl().
-
-Code
+
+Show the code
# Create table of case status:total_ap <-tabyl(copdata, case) %>%# Add row totals:
@@ -1409,7 +1515,7 @@
# Add percentages with 1 digit after the decimal point:adorn_pct_formatting(digits =1) %>%# Filter to rows where case is TRUE:
-filter(case ==TRUE) %>%
+filter(case =="1") %>%# Select the column percent:select(percent) %>%# Extract (pull) the value from this cell:
@@ -1458,8 +1564,8 @@
b) Calculate attack proportions for group, class and sex by case status. You could use tabyl() (as you did in 3.4) or gtsummary::tbl_summary.
{
+ return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
+ }
+ // Inspect non-navigation links and adorn them if external
+ var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
+ for (var i=0; i {
+ // Strip column container classes
+ const stripColumnClz = (el) => {
+ el.classList.remove("page-full", "page-columns");
+ if (el.children) {
+ for (const child of el.children) {
+ stripColumnClz(child);
+ }
+ }
+ }
+ stripColumnClz(note)
+ if (id === null || id.startsWith('sec-')) {
+ // Special case sections, only their first couple elements
+ const container = document.createElement("div");
+ if (note.children && note.children.length > 2) {
+ container.appendChild(note.children[0].cloneNode(true));
+ for (let i = 1; i < note.children.length; i++) {
+ const child = note.children[i];
+ if (child.tagName === "P" && child.innerText === "") {
+ continue;
+ } else {
+ container.appendChild(child.cloneNode(true));
+ break;
+ }
+ }
+ if (window.Quarto?.typesetMath) {
+ window.Quarto.typesetMath(container);
+ }
+ return container.innerHTML
+ } else {
+ if (window.Quarto?.typesetMath) {
+ window.Quarto.typesetMath(note);
+ }
+ return note.innerHTML;
+ }
+ } else {
+ // Remove any anchor links if they are present
+ const anchorLink = note.querySelector('a.anchorjs-link');
+ if (anchorLink) {
+ anchorLink.remove();
+ }
+ if (window.Quarto?.typesetMath) {
+ window.Quarto.typesetMath(note);
+ }
+ // TODO in 1.5, we should make sure this works without a callout special case
+ if (note.classList.contains("callout")) {
+ return note.outerHTML;
+ } else {
+ return note.innerHTML;
+ }
+ }
+ }
+ for (var i=0; i res.text())
+ .then(html => {
+ const parser = new DOMParser();
+ const htmlDoc = parser.parseFromString(html, "text/html");
+ const note = htmlDoc.getElementById(id);
+ if (note !== null) {
+ const html = processXRef(id, note);
+ instance.setContent(html);
+ }
+ }).finally(() => {
+ instance.enable();
+ instance.show();
+ });
+ }
+ } else {
+ // See if we can fetch a full url (with no hash to target)
+ // This is a special case and we should probably do some content thinning / targeting
+ fetch(url)
+ .then(res => res.text())
+ .then(html => {
+ const parser = new DOMParser();
+ const htmlDoc = parser.parseFromString(html, "text/html");
+ const note = htmlDoc.querySelector('main.content');
+ if (note !== null) {
+ // This should only happen for chapter cross references
+ // (since there is no id in the URL)
+ // remove the first header
+ if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
+ note.children[0].remove();
+ }
+ const html = processXRef(null, note);
+ instance.setContent(html);
+ }
+ }).finally(() => {
+ instance.enable();
+ instance.show();
+ });
+ }
+ }, function(instance) {
});
}
let selectedAnnoteEl;
@@ -2341,6 +2681,7 @@
{
+ elRect = undefined;
+ if (selectedAnnoteEl) {
+ selectCodeLines(selectedAnnoteEl);
+ }
+ }, 10)
+ );
+ function throttle(fn, ms) {
+ let throttle = false;
+ let timer;
+ return (...args) => {
+ if(!throttle) { // first call gets through
+ fn.apply(this, args);
+ throttle = true;
+ } else { // all the others get throttled
+ if(timer) clearTimeout(timer); // cancel #2
+ timer = setTimeout(() => {
+ fn.apply(this, args);
+ timer = throttle = false;
+ }, ms);
+ }
+ };
+ }
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
@@ -2472,19 +2839,19 @@
## 3.2 Import your data```{r, Import_data}
-# Import the clean data set:
-copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"))
-lab <- rio::import(here::here("data", "Lab data.xlsx"),
-skip =1) # skip the first row.
+# Import the clean data set:
+copdata <- rio::import(here::here("data", "Spetses_clean2_2024.rds"), trust = T)
+lab <- rio::import(here::here("data", "Lab data.xlsx"),
+ skip = 1) # skip the first row.```## 3.3 Merge and explore the lab data. Explore it as you wish!```{r, merge_lab_data}
-copdatalab <-left_join(copdata, lab,
-by ="id")
-# Tabulate:
-janitor::tabyl(dat = copdatalab, "RT-PCR_ecoli_etec")
+copdatalab <- left_join(copdata, lab,
+ by = "id")
+# Tabulate:
+janitor::tabyl(dat = copdatalab, "RT-PCR_ecoli_etec")```## 3.4 Describe the outbreak in terms of time.
@@ -2502,7 +2869,7 @@
# Create a dataset with only casescases <- copdata %>%
-filter(case ==TRUE)
+filter(case ==1)incplot <- cases %>%# Create an empty ggplot frame:
@@ -2771,57 +3138,57 @@
```{r symptom_barplot}
-# Create list of symptom variables:
-symptoms <-c("diarrhoea",
-"bloody",
-"vomiting",
-"abdo",
-"nausea",
-"fever",
-"headache",
-"jointpain")
+# Create list of symptom variables:
+symptoms <- c("diarrhoea",
+ "bloody",
+ "vomiting",
+ "abdo",
+ "nausea",
+ "fever",
+ "headache",
+ "jointpain")
-# Create nice labels for case definition:
-caselabs <- ggplot2::as_labeller(c(`FALSE`="Non-case",
-`TRUE`="Case"))
-# Select variables and cases:
-symptom_bar <- copdata %>%
-# Select symptom columns:
-select(case, c(all_of(symptoms))) %>%
-# Drop NAs:
-drop_na() %>%
-# Reshape (pivot longer):
-pivot_longer(!case,
-names_to ="Symptoms",
-values_drop_na =TRUE) %>%
-# Keep only TRUE values:
-filter(value ==TRUE) %>%
-
-# Group by symptoms and case:
-group_by(Symptoms, case) %>%
-# Count for each symptom by case:
- dplyr::summarise(count =n()) %>%
-# Create plot:
-ggplot(
-mapping =aes(
-# Order symptom bars so most common ones are ontop:
-x =reorder(Symptoms, desc(count), decreasing =TRUE),
-y = count)) +
-# Display bars as proportions
-geom_bar(stat ="identity") +
-# Update x axis label:
-xlab("Symptoms") +
-# Update y axis label:
-ylab("Proportion of respondents") +
-# Flip plot on its side so symptom labels are clear:
-coord_flip() +
-# Facet the plot by (labelled) case:
-facet_wrap(facets ="case",
-labeller = caselabs,
-ncol =2)
+# Create nice labels for case definition:
+caselabs <- ggplot2::as_labeller(c("0" = "Non-case",
+ "1" = "Case"))
+# Select variables and cases:
+symptom_bar <- copdata %>%
+ # Select symptom columns:
+ select(case, c(all_of(symptoms))) %>%
+ # Drop NAs:
+ drop_na() %>%
+ # Reshape (pivot longer):
+ pivot_longer(!case,
+ names_to = "Symptoms",
+ values_drop_na = TRUE) %>%
+ # Keep only TRUE values:
+ filter(value == "1") %>%
+
+ # Group by symptoms and case:
+ group_by(Symptoms, case) %>%
+ # Count for each symptom by case:
+ dplyr::summarise(count = n()) %>%
+ # Create plot:
+ ggplot(
+ mapping = aes(
+ # Order symptom bars so most common ones are ontop:
+ x = reorder(Symptoms, desc(count), decreasing = TRUE),
+ y = count)) +
+ # Display bars as proportions
+ geom_bar(stat = "identity") +
+ # Update x axis label:
+ xlab("Symptoms") +
+ # Update y axis label:
+ ylab("Proportion of respondents") +
+ # Flip plot on its side so symptom labels are clear:
+ coord_flip() +
+ # Facet the plot by (labelled) case:
+ facet_wrap(facets = "case",
+ labeller = caselabs,
+ ncol = 2)
-# Print plot:
-symptom_bar
+# Print plot:
+symptom_bar```## 3.7 Attack proportions
@@ -2836,7 +3203,7 @@
# Add percentages with 1 digit after the decimal point:adorn_pct_formatting(digits =1) %>%# Filter to rows where case is TRUE:
-filter(case ==TRUE) %>%
+filter(case =="1") %>%# Select the column percent:select(percent) %>%# Extract (pull) the value from this cell:
@@ -2896,10 +3263,11 @@
::: {.callout-tip title="Need a little bit of help?" collapse="true"}
To save your tabyl table as a .docx, you could convert your tabyl to flextable (`as_flex_table()`), ensure only one line per row (`flextable::autofit()`) and save as .docx (`flextable::save_as_docx(path = "nameoftable.docx"`):::
-
+
+