|
905 | 905 | <h4 class="author"><em>Arno Timmer, Jan Verbesselt, Jorge |
906 | 906 | Mendes de Jesus, Aldo Bergsma, Johannes Eberenz, Dainius Masiliunas, |
907 | 907 | David Swinkels, Judith Verstegen, Corné Vreugdenhil</em></h4> |
908 | | - <h4 class="date"><em>08 August, 2025</em></h4> |
| 908 | + <h4 class="date"><em>22 August, 2025</em></h4> |
909 | 909 |
|
910 | 910 |
|
911 | 911 |
|
@@ -951,9 +951,8 @@ <h1>Python Programing</h1> |
951 | 951 | <p>In the previous tutorial, we learned how to set up virtual |
952 | 952 | environments to write and run python code. In today’s tutorial, we will |
953 | 953 | start using these environments in VS Code, which will serve as our |
954 | | -default IDE. If you’re more comfortable with a different IDE, feel free |
955 | | -to use it instead. Next week we will work with spatial data analysis |
956 | | -which more often than not results in data being displayed on a map.</p> |
| 954 | +default IDE. Next week we will work with spatial data analysis which |
| 955 | +more often than not results in data being displayed on a map.</p> |
957 | 956 | <p>During this tutorial, we will demonstrate different ways to visualize |
958 | 957 | data on a map in both static and interactive formats. This can be done |
959 | 958 | using several open source packages that built upon each other. To |
@@ -991,7 +990,7 @@ <h2>Dependencies</h2> |
991 | 990 | - matplotlib</code></pre> |
992 | 991 | <p>In the terminal of VS Code, create the environment using |
993 | 992 | <code>mamba env create --file env.yaml</code>. Then activate this |
994 | | -environment using <code>source activate python-programming</code>. The |
| 993 | +environment using <code>source activate python-programming</code>. Then |
995 | 994 | select <code>python-programming</code> as interpreter, just as we did in |
996 | 995 | the previous tutorial.</p> |
997 | 996 | <!--# Python help (This content is already in Tutorial 8) |
|
0 commit comments