From f52cc580ccb6237a580c11e4c10d9c69e3d7fb59 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?fn=20=E2=8C=83=20=E2=8C=A5?= <70830482+FnControlOption@users.noreply.github.com> Date: Fri, 31 Oct 2025 12:46:18 -0700 Subject: [PATCH 1/7] Fix typo in Section 12.1 of the Open Logic Text --- .../axiomatic-deduction/rules-and-proofs.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/content/first-order-logic/axiomatic-deduction/rules-and-proofs.tex b/content/first-order-logic/axiomatic-deduction/rules-and-proofs.tex index 0c5a52d5..29cce925 100644 --- a/content/first-order-logic/axiomatic-deduction/rules-and-proofs.tex +++ b/content/first-order-logic/axiomatic-deduction/rules-and-proofs.tex @@ -73,8 +73,8 @@ \item for some $j < i$, $!A_j$ is $!B \lif !A_i$, and for some $k < i$, $!A_k$ is~$!B$. \end{enumerate} -The last clause says that $!A_i$ follows from~$!A_j$ ($!B$) and $!A_k$ -($!B \lif !A_i$) by modus ponens. If we can go from $1$ to~$n$, and +The last clause says that $!A_i$ follows from~$!A_j$ ($!B \lif !A_i$) and $!A_k$ +($!B$) by modus ponens. If we can go from $1$ to~$n$, and each time we find !!a{formula}~$!A_i$ that is either in~$\Gamma$, an axiom, or which a rule of inference tells us that it is a correct inference step, then the entire sequence counts as a correct From 5d7f297b268dd5ca7cc5e0cb34b74f8413fd9313 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?fn=20=E2=8C=83=20=E2=8C=A5?= <70830482+FnControlOption@users.noreply.github.com> Date: Fri, 31 Oct 2025 12:50:25 -0700 Subject: [PATCH 2/7] Fix typo in Section 12.2 of the Open Logic Text --- .../axiomatic-deduction/axioms-rules-propositional.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/content/first-order-logic/axiomatic-deduction/axioms-rules-propositional.tex b/content/first-order-logic/axiomatic-deduction/axioms-rules-propositional.tex index ef9b9153..c9e0eb0c 100644 --- a/content/first-order-logic/axiomatic-deduction/axioms-rules-propositional.tex +++ b/content/first-order-logic/axiomatic-deduction/axioms-rules-propositional.tex @@ -10,7 +10,7 @@ {\olfileid{fol}{axd}{prp}} {\olfileid{pl}{axd}{prp}} -\olsection{Axiom and Rules for the Propositional Connectives} +\olsection{Axioms and Rules for the Propositional Connectives} \begin{defn}[Axioms] The set of $\PAx$ of \emph{axioms} for the propositional connectives comprises From 14fb0f2cfe71295b60fb207685241afff8f96cd8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?fn=20=E2=8C=83=20=E2=8C=A5?= <70830482+FnControlOption@users.noreply.github.com> Date: Fri, 31 Oct 2025 12:57:41 -0700 Subject: [PATCH 3/7] Fix typos in Section 12.3 of the Open Logic Text --- .../axiomatic-deduction/proving-things.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/content/first-order-logic/axiomatic-deduction/proving-things.tex b/content/first-order-logic/axiomatic-deduction/proving-things.tex index a7767789..d3dcd567 100644 --- a/content/first-order-logic/axiomatic-deduction/proving-things.tex +++ b/content/first-order-logic/axiomatic-deduction/proving-things.tex @@ -32,7 +32,7 @@ 1. & $\lnot !D \lif (!D \lif !E)$ & \olref[prp]{ax:lnot2} \\ 2. & $(\lnot !D \lif (!D \lif !E)) \lif {}$\\ &\qquad $((!E \lif (!D \lif !E)) \lif ((\lnot !D \lor !E) \lif (!D \lif !E)))$ & \olref[prp]{ax:lor3}\\ - 3. & $((!E \lif (!D \lif !E)) \lif ((\lnot !D \lor !E) \lif (!D \lif !E))$ & 1, 2, \MP\\ + 3. & $(!E \lif (!D \lif !E)) \lif ((\lnot !D \lor !E) \lif (!D \lif !E))$ & 1, 2, \MP\\ 4. & $!E \lif (!D \lif !E)$ & \olref[prp]{ax:lif1}\\ 5. & $(\lnot !D \lor !E) \lif (!D \lif !E)$ & 3, 4, \MP \end{derivation} @@ -111,10 +111,10 @@ lines 3--7 of the !!{derivation} in the preceding example. This is !!a{derivation} of $!A \lif !C$---which is the last line of the new !!{derivation}---from~$\Gamma$. Note that the justifications of - lines 4 and~7 remain valid if the reference to line number~2 is + lines 4 and~7 remain valid if the reference to line number~1 is replaced by reference to the last line of the !!{derivation} of~$!A - \lif !B$, and reference to line number~1 by reference to the last - line of the !!{derivation} of~$B \lif !C$. + \lif !B$, and reference to line number~2 by reference to the last + line of the !!{derivation} of~$!B \lif !C$. \end{proof} \begin{prob} From 8892e104cb160ca19feb5384583628973d5c3010 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?fn=20=E2=8C=83=20=E2=8C=A5?= <70830482+FnControlOption@users.noreply.github.com> Date: Fri, 31 Oct 2025 13:02:54 -0700 Subject: [PATCH 4/7] Fix typo in Section 12.5 of the Open Logic Text --- .../first-order-logic/axiomatic-deduction/deduction-theorem.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/content/first-order-logic/axiomatic-deduction/deduction-theorem.tex b/content/first-order-logic/axiomatic-deduction/deduction-theorem.tex index b6b26a01..2e2ee013 100644 --- a/content/first-order-logic/axiomatic-deduction/deduction-theorem.tex +++ b/content/first-order-logic/axiomatic-deduction/deduction-theorem.tex @@ -68,7 +68,7 @@ is an axiom, then $\Gamma \Proves !B$. We also have that $\Gamma \Proves !B \lif (!A \lif !B)$ by \olref[prp]{ax:lif1}, and \olref{prop:mp} gives $\Gamma \Proves !A \lif !B$. If $!B \in \{ !A\}$ -then $\Gamma \Proves !A \lif !B$ because then last !!{sentence}~$!A +then $\Gamma \Proves !A \lif !B$ because the last !!{sentence}~$!A \lif !B$ is the same as $!A \lif !A$, and we have !!{derive}d that in \olref[pro]{ex:identity}. From a0e6552ae9ab28f3a822a5854ebe19f7866dc93f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?fn=20=E2=8C=83=20=E2=8C=A5?= <70830482+FnControlOption@users.noreply.github.com> Date: Fri, 31 Oct 2025 13:08:58 -0700 Subject: [PATCH 5/7] Fix typo in Section 22.11 of the Open Logic Text --- .../axiomatic-deduction/provability-quantifiers.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/content/first-order-logic/axiomatic-deduction/provability-quantifiers.tex b/content/first-order-logic/axiomatic-deduction/provability-quantifiers.tex index 02957caa..2e60b409 100644 --- a/content/first-order-logic/axiomatic-deduction/provability-quantifiers.tex +++ b/content/first-order-logic/axiomatic-deduction/provability-quantifiers.tex @@ -27,7 +27,7 @@ \begin{proof} By the deduction theorem, $\Gamma \Proves \ltrue \lif !A(c)$. Since $c$ does not occur in $\Gamma$ or~$\top$, we get $\Gamma \Proves -\ltrue \lif !A(c)$. By the deduction theorem again, $\Gamma \Proves +\ltrue \lif \lforall[x][!A(x)]$. By the deduction theorem again, $\Gamma \Proves \lforall[x][!A(x)]$. \end{proof} From ca51c72354fd20c809e97ab062acf328a6e1975f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?fn=20=E2=8C=83=20=E2=8C=A5?= <70830482+FnControlOption@users.noreply.github.com> Date: Fri, 31 Oct 2025 13:19:16 -0700 Subject: [PATCH 6/7] Fix typos in proof of Theorem 22.36 --- .../first-order-logic/axiomatic-deduction/soundness.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/content/first-order-logic/axiomatic-deduction/soundness.tex b/content/first-order-logic/axiomatic-deduction/soundness.tex index 6fe04524..ff619e70 100644 --- a/content/first-order-logic/axiomatic-deduction/soundness.tex +++ b/content/first-order-logic/axiomatic-deduction/soundness.tex @@ -69,7 +69,7 @@ ponens, then there are !!{formula}s $!B$ and $!B \lif !A$ in the !!{derivation}, and the induction hypothesis applies to the part of the !!{derivation} ending in those !!{formula}s (since they contain at -least one fewer steps justified by an inference). So, by induction +least one fewer step justified by an inference). So, by induction hypothesis, $\Gamma \Entails !B$ and $\Gamma \Entails !B \lif !A$. Then $\Gamma \Entails !A$ by \iftag{FOL} @@ -80,7 +80,7 @@ \QR. Then that step has the form $!C \lif \lforall[x][B(x)]$ and there is a preceding step $!C \lif !B(c)$ with $c$ not in $\Gamma$, $!C$, or $\lforall[x][B(x)]$. By induction hypothesis, $\Gamma -\Entails !C \lif \lforall[x][B(x)]$. By +\Entails !C \lif !B(c)$. By \olref[syn][sem]{thm:sem-deduction}, $\Gamma \cup \{!C\} \Entails !B(c)$. @@ -95,9 +95,9 @@ not occur in~$\Gamma$ or~$!C$, $\Sat{M'}{\Gamma \cup \{!C\}}$ by \olref[syn][ext]{cor:extensionality-sent}. Since $\Gamma \cup \{!C\} \Entails !B(c)$, $\Sat{M'}{B(c)}$. Since $!B(c)$ is !!a{sentence}, -$\Sat{M}{!B(c)}[s]$ by +$\Sat{M'}{!B(c)}[s]$ by \olref[syn][ass]{prop:sentence-sat-true}. $\Sat{M'}{!B(x)}[s]$ iff -$\Sat{M'}{!B(c)}$ by \olref[syn][ext]{prop:ext-formulas} (recall that +$\Sat{M'}{!B(c)}[s]$ by \olref[syn][ext]{prop:ext-formulas} (recall that $!B(c)$ is just $\Subst{!B(x)}{c}{x}$). So, $\Sat{M'}{!B(x)}[s]$. Since $c$ does not occur in~$!B(x)$, by \olref[syn][ext]{prop:extensionality}, $\Sat{M}{!B(x)}[s]$. But $s$ From dfaf322dbeefee74e68bfc48dc49b70d3132b403 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?fn=20=E2=8C=83=20=E2=8C=A5?= <70830482+FnControlOption@users.noreply.github.com> Date: Fri, 31 Oct 2025 19:41:30 -0700 Subject: [PATCH 7/7] Add line break for screen reading In Section 27.4: The Definability Theorem --- content/model-theory/interpolation/definability.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/content/model-theory/interpolation/definability.tex b/content/model-theory/interpolation/definability.tex index 00c62edf..54f506dd 100644 --- a/content/model-theory/interpolation/definability.tex +++ b/content/model-theory/interpolation/definability.tex @@ -103,7 +103,7 @@ By Craig's Interpolation Theorem there is !!a{sentence} $!C(c_1,\dots, c_n)$ not containing $P$ or $P'$ such that: \begin{align*} - !D(P) \land \Atom{P}{c_1, \dots, c_n} & \Entails !C(c_1,\dots, c_n); & + !D(P) \land \Atom{P}{c_1, \dots, c_n} & \Entails !C(c_1,\dots, c_n); \\ !C(c_1,\dots, c_n) & \Entails !D(P') \to \Atom{P'}{c_1, \dots, c_n}. \end{align*} From the former of these two entailments we have: $!D(P) \Entails