Skip to content

PrasanthSurya-dev/Credit_Card_Fraud_Detection_System

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ’³ Credit Card Fraud Detection System

This project uses machine learning to detect fraudulent credit card transactions. The dataset used is highly imbalanced and contains only a small fraction of fraudulent transactions. This system is designed to help financial institutions identify suspicious activity effectively and minimize potential financial losses.

πŸ“Œ Project Overview

  • Goal: Accurately classify credit card transactions as fraudulent or legitimate.
  • Dataset: European credit card transactions (from Kaggle).
  • Tech Stack: Python, Pandas, Scikit-Learn, Matplotlib, Seaborn

πŸš€ Features

  • Data preprocessing and cleaning
  • Exploratory Data Analysis (EDA) and visualization
  • Feature selection and scaling
  • Model training using multiple ML algorithms
  • Evaluation using accuracy, precision, recall, F1-score, and ROC-AUC
  • Handling imbalanced data using SMOTE and undersampling techniques
  • Confusion matrix and ROC curve visualization

πŸ“‚ Folder Structure

Credit_Card_Fraud_Detection_System/
β”‚
β”œβ”€β”€ data/                        # Dataset files (CSV)
β”œβ”€β”€ models/                      # Saved model files
β”œβ”€β”€ notebooks/                   # Jupyter notebooks
β”œβ”€β”€ visuals/                     # Plots and graphs
β”œβ”€β”€ fraud_detection.py          # Main Python script
β”œβ”€β”€ requirements.txt            # Dependencies
└── README.md                   # Project documentation

πŸ“ˆ Evaluation Metrics

  • Confusion Matrix
  • Accuracy
  • Precision
  • Recall
  • F1 Score
  • ROC-AUC Curve

πŸ“Š Algorithms Used

  • Logistic Regression
  • Random Forest Classifier
  • Decision Trees
  • XGBoost
  • Support Vector Machine (SVM)
  • K-Nearest Neighbors (KNN)

πŸ“š Future Improvements

  • Integrate deep learning (LSTM or autoencoders)
  • Real-time fraud detection with stream data
  • Web interface or dashboard using Flask/Streamlit

🀝 Acknowledgements

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages