|
37 | 37 | { |
38 | 38 | "cell_type": "code", |
39 | 39 | "execution_count": null, |
40 | | - "metadata": { |
41 | | - "collapsed": true |
42 | | - }, |
| 40 | + "metadata": {}, |
43 | 41 | "outputs": [], |
44 | 42 | "source": [ |
45 | 43 | "# Python standard library\n", |
|
64 | 62 | "%matplotlib inline" |
65 | 63 | ] |
66 | 64 | }, |
| 65 | + { |
| 66 | + "cell_type": "markdown", |
| 67 | + "metadata": {}, |
| 68 | + "source": [ |
| 69 | + "If you are running an older version of `astroquery`, you might need to set `vos_baseurl` yourself, as follows." |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": null, |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [], |
| 77 | + "source": [ |
| 78 | + "from astropy.utils import minversion\n", |
| 79 | + "\n", |
| 80 | + "if not minversion(astroquery, '0.3.10'):\n", |
| 81 | + " conf.vos_baseurl = 'http://astropy.stsci.edu/aux/vo_databases/'" |
| 82 | + ] |
| 83 | + }, |
67 | 84 | { |
68 | 85 | "cell_type": "markdown", |
69 | 86 | "metadata": {}, |
|
143 | 160 | { |
144 | 161 | "cell_type": "code", |
145 | 162 | "execution_count": null, |
146 | | - "metadata": { |
147 | | - "collapsed": true |
148 | | - }, |
| 163 | + "metadata": {}, |
149 | 164 | "outputs": [], |
150 | 165 | "source": [ |
151 | 166 | "result_tab.write('my_result.tex', format='ascii.latex')" |
|
173 | 188 | { |
174 | 189 | "cell_type": "code", |
175 | 190 | "execution_count": null, |
176 | | - "metadata": { |
177 | | - "collapsed": true |
178 | | - }, |
| 191 | + "metadata": {}, |
179 | 192 | "outputs": [], |
180 | 193 | "source": [ |
181 | 194 | "# Due to the unpredictability of external services,\n", |
|
192 | 205 | { |
193 | 206 | "cell_type": "code", |
194 | 207 | "execution_count": null, |
195 | | - "metadata": { |
196 | | - "collapsed": true |
197 | | - }, |
| 208 | + "metadata": {}, |
198 | 209 | "outputs": [], |
199 | 210 | "source": [ |
200 | 211 | "# Don't run this cell if column names above are invalid.\n", |
|
219 | 230 | { |
220 | 231 | "cell_type": "code", |
221 | 232 | "execution_count": null, |
222 | | - "metadata": { |
223 | | - "collapsed": true |
224 | | - }, |
| 233 | + "metadata": {}, |
225 | 234 | "outputs": [], |
226 | 235 | "source": [ |
227 | 236 | "my_db = vos_catalog.get_remote_catalog_db(conf.conesearch_dbname)\n", |
|
239 | 248 | { |
240 | 249 | "cell_type": "code", |
241 | 250 | "execution_count": null, |
242 | | - "metadata": { |
243 | | - "collapsed": true |
244 | | - }, |
| 251 | + "metadata": {}, |
245 | 252 | "outputs": [], |
246 | 253 | "source": [ |
247 | 254 | "result = conesearch.conesearch(\n", |
|
251 | 258 | { |
252 | 259 | "cell_type": "code", |
253 | 260 | "execution_count": null, |
254 | | - "metadata": { |
255 | | - "collapsed": true |
256 | | - }, |
| 261 | + "metadata": {}, |
257 | 262 | "outputs": [], |
258 | 263 | "source": [ |
259 | 264 | "print('Number of rows is', result.nrows)" |
|
276 | 281 | { |
277 | 282 | "cell_type": "code", |
278 | 283 | "execution_count": null, |
279 | | - "metadata": { |
280 | | - "collapsed": true |
281 | | - }, |
| 284 | + "metadata": {}, |
282 | 285 | "outputs": [], |
283 | 286 | "source": [ |
284 | 287 | "data_array = result.array.data\n", |
|
288 | 291 | { |
289 | 292 | "cell_type": "code", |
290 | 293 | "execution_count": null, |
291 | | - "metadata": { |
292 | | - "collapsed": true |
293 | | - }, |
| 294 | + "metadata": {}, |
294 | 295 | "outputs": [], |
295 | 296 | "source": [ |
296 | 297 | "col_names = data_array.dtype.names\n", |
|
300 | 301 | { |
301 | 302 | "cell_type": "code", |
302 | 303 | "execution_count": null, |
303 | | - "metadata": { |
304 | | - "collapsed": true |
305 | | - }, |
| 304 | + "metadata": {}, |
306 | 305 | "outputs": [], |
307 | 306 | "source": [ |
308 | 307 | "distance = data_array['_r']\n", |
|
321 | 320 | { |
322 | 321 | "cell_type": "code", |
323 | 322 | "execution_count": null, |
324 | | - "metadata": { |
325 | | - "collapsed": true |
326 | | - }, |
| 323 | + "metadata": {}, |
327 | 324 | "outputs": [], |
328 | 325 | "source": [ |
329 | 326 | "distance_field = result.get_field_by_id('_r')\n", |
|
334 | 331 | { |
335 | 332 | "cell_type": "code", |
336 | 333 | "execution_count": null, |
337 | | - "metadata": { |
338 | | - "collapsed": true |
339 | | - }, |
| 334 | + "metadata": {}, |
340 | 335 | "outputs": [], |
341 | 336 | "source": [ |
342 | 337 | "sorted_distance = distance[sorted_indices]\n", |
|
357 | 352 | { |
358 | 353 | "cell_type": "code", |
359 | 354 | "execution_count": null, |
360 | | - "metadata": { |
361 | | - "collapsed": true |
362 | | - }, |
| 355 | + "metadata": {}, |
363 | 356 | "outputs": [], |
364 | 357 | "source": [ |
365 | 358 | "with warnings.catch_warnings():\n", |
|
370 | 363 | { |
371 | 364 | "cell_type": "code", |
372 | 365 | "execution_count": null, |
373 | | - "metadata": { |
374 | | - "collapsed": true |
375 | | - }, |
| 366 | + "metadata": {}, |
376 | 367 | "outputs": [], |
377 | 368 | "source": [ |
378 | 369 | "for url, tab in all_results.items():\n", |
|
382 | 373 | { |
383 | 374 | "cell_type": "code", |
384 | 375 | "execution_count": null, |
385 | | - "metadata": { |
386 | | - "collapsed": true |
387 | | - }, |
| 376 | + "metadata": {}, |
388 | 377 | "outputs": [], |
389 | 378 | "source": [ |
390 | 379 | "i220keys = [k for k in all_results if 'I/220' in k] # pick out the first one with \"I/220\" in it\n", |
|
410 | 399 | { |
411 | 400 | "cell_type": "code", |
412 | 401 | "execution_count": null, |
413 | | - "metadata": { |
414 | | - "collapsed": true |
415 | | - }, |
| 402 | + "metadata": {}, |
416 | 403 | "outputs": [], |
417 | 404 | "source": [ |
418 | 405 | "async_search = conesearch.AsyncConeSearch(\n", |
|
431 | 418 | "cell_type": "code", |
432 | 419 | "execution_count": null, |
433 | 420 | "metadata": { |
434 | | - "collapsed": true, |
435 | 421 | "scrolled": true |
436 | 422 | }, |
437 | 423 | "outputs": [], |
|
465 | 451 | { |
466 | 452 | "cell_type": "code", |
467 | 453 | "execution_count": null, |
468 | | - "metadata": { |
469 | | - "collapsed": true |
470 | | - }, |
| 454 | + "metadata": {}, |
471 | 455 | "outputs": [], |
472 | 456 | "source": [ |
473 | 457 | "with warnings.catch_warnings():\n", |
|
480 | 464 | { |
481 | 465 | "cell_type": "code", |
482 | 466 | "execution_count": null, |
483 | | - "metadata": { |
484 | | - "collapsed": true |
485 | | - }, |
| 467 | + "metadata": {}, |
486 | 468 | "outputs": [], |
487 | 469 | "source": [ |
488 | 470 | "print('Predicted run time is', t_est, 'seconds')\n", |
|
501 | 483 | { |
502 | 484 | "cell_type": "code", |
503 | 485 | "execution_count": null, |
504 | | - "metadata": { |
505 | | - "collapsed": true |
506 | | - }, |
| 486 | + "metadata": {}, |
507 | 487 | "outputs": [], |
508 | 488 | "source": [ |
509 | 489 | "t_real, tab = conesearch.conesearch_timer(\n", |
|
515 | 495 | { |
516 | 496 | "cell_type": "code", |
517 | 497 | "execution_count": null, |
518 | | - "metadata": { |
519 | | - "collapsed": true |
520 | | - }, |
| 498 | + "metadata": {}, |
521 | 499 | "outputs": [], |
522 | 500 | "source": [ |
523 | 501 | "print('Actual run time is', t_real, 'seconds')\n", |
|
549 | 527 | "name": "python", |
550 | 528 | "nbconvert_exporter": "python", |
551 | 529 | "pygments_lexer": "ipython3", |
552 | | - "version": "3.6.2" |
| 530 | + "version": "3.7.3" |
553 | 531 | } |
554 | 532 | }, |
555 | 533 | "nbformat": 4, |
|
0 commit comments