|
| 1 | +# |
| 2 | +# This script can be used for any purpose without limitation subject to the |
| 3 | +# conditions at http://www.ccdc.cam.ac.uk/Community/Pages/Licences/v2.aspx |
| 4 | +# |
| 5 | +# This permission notice and the following statement of attribution must be |
| 6 | +# included in all copies or substantial portions of this script. |
| 7 | +# |
| 8 | + |
| 9 | +""" |
| 10 | +Script to classify the shape of a crystal morphology as belonging to one of four classes: |
| 11 | +
|
| 12 | + - block |
| 13 | + - plate |
| 14 | + - lath |
| 15 | + - needle |
| 16 | +
|
| 17 | +The shape classification follows the definition of Angelidakis, Nadimi and Utili found in |
| 18 | +Powder Technology, 396 (2022), 689-695 DOI: 10.1016/j.powtec.2021.11.027 |
| 19 | +
|
| 20 | +""" |
| 21 | + |
| 22 | +import numpy as np |
| 23 | +import matplotlib.pyplot as plt |
| 24 | +from matplotlib import cm |
| 25 | +from cycler import cycler |
| 26 | + |
| 27 | + |
| 28 | +def _elongation_line(): |
| 29 | + """ |
| 30 | + This function's purpose is exclusively that of calculating the lines that separate different regions of the plot. |
| 31 | + Shape classification is not based on this function. |
| 32 | +
|
| 33 | + Finds the line corresponding to aspect ratios with elongation = 0.2 |
| 34 | + """ |
| 35 | + |
| 36 | + # set b = 1, then solve elongation = 0.2 for a using a solver |
| 37 | + # ac/(ac+1)-c/(a+c) = 0.2 |
| 38 | + |
| 39 | + values = np.linspace(0.0001, 1, 100) |
| 40 | + |
| 41 | + def func(c): |
| 42 | + # these are the solutions of the equation to get a as a function of c |
| 43 | + sol1 = (c ** 2 + 1 - np.sqrt(c ** 4 + 98 * c ** 2 + 1)) / (8 * c) |
| 44 | + sol2 = (c ** 2 + 1 + np.sqrt(c ** 4 + 98 * c ** 2 + 1)) / (8 * c) |
| 45 | + return sol1, sol2 |
| 46 | + |
| 47 | + # get the "elongation" line |
| 48 | + x_values = [] |
| 49 | + y_values = [] |
| 50 | + for c in values: |
| 51 | + x_values.append(c) |
| 52 | + # we keep positive solutions only |
| 53 | + _, a = func(c) |
| 54 | + y_values.append(1 / a) |
| 55 | + # x_values are the c/b ratios |
| 56 | + # y_values are the b/a ratios |
| 57 | + return x_values, y_values |
| 58 | + |
| 59 | + |
| 60 | +def _flatness_line(): |
| 61 | + """ |
| 62 | + This function's purpose is exclusively that of calculating the lines that separate different regions of the plot. |
| 63 | + Shape classification is not based on this function. |
| 64 | +
|
| 65 | + Finds the line corresponding to aspect ratios with flatness = 0.2 |
| 66 | + """ |
| 67 | + # set a = 1, then solve flatness = 0.2 for c using a solver |
| 68 | + # b^2/(c+b^2) - c/(c+1) = 0.2 |
| 69 | + values = np.linspace(0.0001, 1, 100) |
| 70 | + |
| 71 | + def func(b): |
| 72 | + # these are the solutions of the equation to get c as a function of b |
| 73 | + sol1 = (- b ** 2 - 1 + np.sqrt(b ** 4 + 98 * b ** 2 + 1)) / 12 |
| 74 | + sol2 = (- b ** 2 + 1 + np.sqrt(b ** 4 + 98 * b ** 2 + 1)) / 12 |
| 75 | + return sol1, sol2 |
| 76 | + |
| 77 | + # get the "flatness" line |
| 78 | + x_values = [] |
| 79 | + y_values = [] |
| 80 | + for b in values: |
| 81 | + y_values.append(b) |
| 82 | + # we keep positive solutions only |
| 83 | + c, _ = func(b) |
| 84 | + x_values.append(c / b) |
| 85 | + # x_values are the c/b ratios |
| 86 | + # y_values are the b/a ratios |
| 87 | + return x_values, y_values |
| 88 | + |
| 89 | + |
| 90 | +def plot(shape): |
| 91 | + """ |
| 92 | + Prepare a Zingg plot for a single morphology. |
| 93 | +
|
| 94 | + :param shape: an instance of the ShapeClassifier class |
| 95 | + """ |
| 96 | + fig, ax = plt.subplots() |
| 97 | + ax.set_xlim(0, 1) |
| 98 | + ax.set_ylim(0, 1) |
| 99 | + ax.set_aspect("equal") |
| 100 | + ax.set_xlabel("S / M") |
| 101 | + ax.set_ylabel("M / L") |
| 102 | + ax.text(0.01, 0.95, "PLATE") |
| 103 | + ax.text(0.85, 0.01, "NEEDLE") |
| 104 | + ax.text(0.85, 0.95, "BLOCK") |
| 105 | + ax.text(0.2, 0.2, "LATH") |
| 106 | + |
| 107 | + # calculate the dividing lines |
| 108 | + # line where elongation = 0.2 |
| 109 | + el_line = elongation_line() |
| 110 | + # line where flatness = 0.2 |
| 111 | + fl_line = flatness_line() |
| 112 | + ax.plot(el_line[0], el_line[1], lw=1, c="k") |
| 113 | + ax.plot(fl_line[0], fl_line[1], lw=1, c="k") |
| 114 | + # plot lines of classic Zingg plot |
| 115 | + ax.axvline(x=2 / 3, c="grey", lw=0.5, ls="--") |
| 116 | + ax.axhline(y=2 / 3, c="grey", lw=0.5, ls="--") |
| 117 | + # finally plot the data |
| 118 | + # can add additional arguments here to make prettier |
| 119 | + ax.scatter(self.minor_length / self.median_length, self.median_length / self.major_length) |
| 120 | + plt.show() |
| 121 | + |
| 122 | + |
| 123 | +def plot_multiple_shapes(shapes): |
| 124 | + """ |
| 125 | + Make a Zingg plo for multiple morphologies. |
| 126 | +
|
| 127 | + :param shapes: a list of ShapeClassifier objects |
| 128 | + """ |
| 129 | + |
| 130 | + plt.rcParams.update({'font.family': 'Arial'}) |
| 131 | + fig, ax = plt.subplots() |
| 132 | + ax.set_xlim(0, 1) |
| 133 | + ax.set_ylim(0, 1) |
| 134 | + ax.set_aspect("equal") |
| 135 | + ax.set_xlabel("S / M") |
| 136 | + ax.set_ylabel("M / L") |
| 137 | + ax.text(0.01, 0.95, "PLATE") |
| 138 | + ax.text(0.85, 0.01, "NEEDLE") |
| 139 | + ax.text(0.85, 0.95, "BLOCK") |
| 140 | + ax.text(0.2, 0.2, "LATH") |
| 141 | + |
| 142 | + # calculate the dividing lines |
| 143 | + # line where elongation = 0.2 |
| 144 | + el_line = _elongation_line() |
| 145 | + # line where flatness = 0.2 |
| 146 | + fl_line = _flatness_line() |
| 147 | + ax.plot(el_line[0], el_line[1], lw=1, c="k") |
| 148 | + ax.plot(fl_line[0], fl_line[1], lw=1, c="k") |
| 149 | + # plot lines of classic Zingg plot |
| 150 | + ax.axvline(x=2 / 3, c="grey", lw=0.5, ls="--") |
| 151 | + ax.axhline(y=2 / 3, c="grey", lw=0.5, ls="--") |
| 152 | + # define a colormap |
| 153 | + colours = cm.bwr(np.linspace(0, 1, len([item for item in shapes if item != 0]))) |
| 154 | + # finally plot the data |
| 155 | + ax.set_prop_cycle(cycler('color', colours)) |
| 156 | + for shape in shapes: |
| 157 | + ax.scatter(shape.minor_length / shape.median_length, shape.median_length / shape.major_length) |
| 158 | + plt.show() |
| 159 | + |
| 160 | + |
| 161 | +class ShapeClassifier: |
| 162 | + |
| 163 | + def __init__(self, morphology: object): |
| 164 | + """ |
| 165 | + param morphology: an instance of ccdc.morphology classes |
| 166 | + """ |
| 167 | + self.morphology = morphology |
| 168 | + self.bounding_box = self.morphology.oriented_bounding_box |
| 169 | + self.major_length, self.median_length, self.minor_length = self.bounding_box.lengths |
| 170 | + |
| 171 | + @property |
| 172 | + def elongation(self) -> float: |
| 173 | + return (self.major_length * self.minor_length) / ( |
| 174 | + self.major_length * self.minor_length + self.median_length ** 2) - self.minor_length / ( |
| 175 | + self.major_length + self.minor_length) |
| 176 | + |
| 177 | + @property |
| 178 | + def flatness(self) -> float: |
| 179 | + return self.median_length ** 2 / ( |
| 180 | + self.major_length * self.minor_length + self.median_length ** 2) - self.minor_length / ( |
| 181 | + self.major_length + self.minor_length) |
| 182 | + |
| 183 | + @property |
| 184 | + def compactness(self) -> float: |
| 185 | + return 2 * self.minor_length / (self.major_length + self.minor_length) |
| 186 | + |
| 187 | + @property |
| 188 | + def shape_description(self) -> str: |
| 189 | + """Return the classification of the shape""" |
| 190 | + if self.elongation >= 0.2: |
| 191 | + if self.flatness >= 0.2: |
| 192 | + return "Lath" |
| 193 | + else: |
| 194 | + return "Needle" |
| 195 | + if self.elongation < 0.2: |
| 196 | + if self.flatness < 0.2: |
| 197 | + return "Block" |
| 198 | + else: |
| 199 | + return "Plate" |
| 200 | + |
| 201 | + |
| 202 | +if __name__ == "__main__": |
| 203 | + # an example of how to use this script |
| 204 | + |
| 205 | + from ccdc.io import EntryReader |
| 206 | + from ccdc.morphology import BFDHMorphology |
| 207 | + |
| 208 | + # let's calculate a morphology! |
| 209 | + refcode = "VUKRAW" |
| 210 | + reader = EntryReader("CSD") |
| 211 | + entry = reader.entry(refcode) |
| 212 | + crystal = entry.crystal |
| 213 | + |
| 214 | + bfdh_morphology = BFDHMorphology(crystal) |
| 215 | + |
| 216 | + shape_1 = ShapeClassifier(bfdh_morphology) |
| 217 | + print(f"{refcode} BFDH morphology is classified as a: {shape_1.shape_description}") |
| 218 | + |
| 219 | + # let's try with another morphology! |
| 220 | + refcode = "AABHTZ" |
| 221 | + reader = EntryReader("CSD") |
| 222 | + entry = reader.entry(refcode) |
| 223 | + crystal = entry.crystal |
| 224 | + |
| 225 | + bfdh_morphology = BFDHMorphology(crystal) |
| 226 | + |
| 227 | + shape_2 = ShapeClassifier(bfdh_morphology) |
| 228 | + print(f"{refcode} BFDH morphology is classified as a: {shape_2.shape_description}") |
| 229 | + |
| 230 | + # now let's make a Zingg plot to visualise our particles' shapes |
| 231 | + plot_multiple_shapes([shape_1, shape_2]) |
0 commit comments