@@ -176,7 +176,7 @@ We want to perform pose detection on a video with dimensions of 640x360 pixels,
176176to crop and resize the video frames to 192x192 pixels before inputting them into the model
177177(we have omitted the frame capture code for simplicity, but you can find the code in the
178178repository). To do so, we use the
179- [ resize()] ( https://docs.opencv.org/4.5.5 /da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d )
179+ [ resize()] ( https://docs.opencv.org/4.12.0 /da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d )
180180function from the OpenCV library.
181181
182182{% highlight cpp %}
@@ -348,8 +348,8 @@ class PoseEstimationRecipe(ConanFile):
348348 generators = "CMakeDeps", "CMakeToolchain"
349349
350350 def requirements(self):
351- self.requires("tensorflow-lite/2.10 .0")
352- self.requires("opencv/4.5.5 ")
351+ self.requires("tensorflow-lite/2.12 .0")
352+ self.requires("opencv/4.12.0 ")
353353
354354 def layout(self):
355355 cmake_layout(self)
@@ -362,7 +362,7 @@ section](https://docs.conan.io/2/tutorial/consuming_packages) of the Conan docum
362362for more information.
363363
364364Now we can use Conan to install the libraries. It will not only install
365- * tensorflow-lite/2.10 .0* and * opencv/4.5.5 * , but also all the necessary transitive
365+ * tensorflow-lite/2.12 .0* and * opencv/4.12.0 * , but also all the necessary transitive
366366dependencies. For example, for a machine running macOS Ventura the whole dependency graph
367367would look similar to this:
368368
0 commit comments