Research-oriented framework for Agentic Context Engineering. It captures, ranks, and reuses "context deltas" from LLM interactions so agents adapt without retraining, following the methodology described in Agentic Context Engineering Framework.
- LLM provider agnostic (OpenAI, Anthropic, LiteLLM, Ollama, custom wrappers)
- Storage backend agnostic (memory, SQLite, Postgres/pgvector, extensible interfaces)
- Token budget management, retrieval & ranking, reflection, and curation pipelines
- Ready for Python 3.12 with strict typing, async workflows, and modern tooling
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
pip install -r requirements.txt.
acet/ # Library source (packages added per phase)
benchmarks/ # Performance and benchmark suites
docs/ # Documentation site sources
examples/ # Usage examples and sample apps
tests/ # Unit, integration, and benchmark tests
- Create/activate the local virtual environment.
- Install dependencies with
pip install -r requirements.txt. - Run format and lint checks:
black .andruff check. - Run type checks:
mypy --strict .. - Run tests:
pytest --cov=acet.
- Delta retrieval (250 active deltas): ~2 ms mean latency (
tests/benchmarks/test_delta_retrieval.py) - SQLite save/query (300 staged deltas): ~23 ms mean latency (
tests/benchmarks/test_storage_throughput.py) - Curator dedup (300 proposed insights, 30% duplicates): ~140 ms mean latency (
tests/benchmarks/test_curator_throughput.py)
All benchmarks are reproducible via the CLI harnesses under benchmarks/. For example:
python benchmarks/delta_retrieval.py --iterations 30 --plot benchmarks/artifacts/delta_latency.png
python benchmarks/storage_throughput.py --backend all --iterations 30 --plot benchmarks/artifacts/storage_latency.png
python benchmarks/curator_throughput.py --proposals 300 --duplicate-ratio 0.3 --iterations 20 --plot benchmarks/artifacts/curator_latency.pngAdjust the parameters or swap in your production embeddings/backends to profile your deployment.