You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/user_guides/fs/transformation_functions.md
+6-6Lines changed: 6 additions & 6 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -8,7 +8,7 @@ These can be used along with [feature groups](./feature_group/index.md) and [fe
8
8
9
9
## Custom Transformation Function Creation
10
10
11
-
User-defined transformation functions can be created in Hopsworks using the [`@udf`](http://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/udf/) decorator.
11
+
User-defined transformation functions can be created in Hopsworks using the [`@udf`](https://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/udf/) decorator.
12
12
These functions can be either implemented as pure Python UDFs or Pandas UDFs (User-Defined Functions).
13
13
14
14
Hopsworks offers three execution modes to control the execution of transformation functions during training dataset creation, batch inference, and online inference.
@@ -34,7 +34,7 @@ These functions can be part of a library [installed](../../user_guides/projects/
34
34
Definition transformation function within a Jupyter notebook is only supported in Python Kernel.
35
35
In a PySpark Kernel transformation function have to defined as modules or added when starting a Jupyter notebook.
36
36
37
-
The `@udf` decorator in Hopsworks creates a metadata class called [`HopsworksUdf`](http://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/hopsworks_udf/).
37
+
The `@udf` decorator in Hopsworks creates a metadata class called [`HopsworksUdf`](https://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/hopsworks_udf/).
38
38
This class manages the necessary operations to execute the transformation function.
39
39
40
40
The decorator accepts three parameters:
@@ -210,7 +210,7 @@ In the example below, the columns mapped to the arguments `feature1` and `fea
210
210
211
211
### Specifying output features names for transformation functions
212
212
213
-
The [`alias`](http://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/transformation_functions_api/#alias) function of a transformation function allows the specification of names of transformed features generated by the transformation function.
213
+
The [`alias`](https://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/transformation_functions_api/#alias) function of a transformation function allows the specification of names of transformed features generated by the transformation function.
214
214
Each name must be uniques and should be at-most 63 characters long.
215
215
If no name is provided via the `alias` function, Hopsworks generates default output feature names when [on-demand](./feature_group/on_demand_transformations.md) or [model-dependent](./feature_view/model-dependent-transformations.md) transformation functions are created.
216
216
@@ -231,7 +231,7 @@ If no name is provided via the `alias` function, Hopsworks generates default out
231
231
### Training dataset statistics
232
232
233
233
A keyword argument `statistics` can be defined in the transformation function if it requires training dataset statistics for any of its arguments.
234
-
The `statistics` argument must be assigned an instance of the class [`TransformationStatistics`](http://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/transformation_statistics/) as the default value.
234
+
The `statistics` argument must be assigned an instance of the class [`TransformationStatistics`](https://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/transformation_statistics/) as the default value.
235
235
The `TransformationStatistics` instance must be initialized using the names of the arguments requiring statistics.
236
236
237
237
!!! warning "Transformation Statistics"
@@ -240,7 +240,7 @@ The `TransformationStatistics` instance must be initialized using the names of
240
240
Training dataset statistics are not available for on-demand transformations.
241
241
242
242
The `TransformationStatistics` instance contains separate objects with the same name as the arguments used to initialize it.
243
-
These objects encapsulate statistics related to the argument as instances of the class [`FeatureTransformationStatistics`](http://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/feature_transformation_statistics/).
243
+
These objects encapsulate statistics related to the argument as instances of the class [`FeatureTransformationStatistics`](https://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/feature_transformation_statistics/).
244
244
Upon instantiation, instances of `FeatureTransformationStatistics` contain `None` values and are updated with the required statistics after the creation of a training dataset.
245
245
246
246
=== "Python"
@@ -274,7 +274,7 @@ By including the context argument, you can pass the necessary data as a dictiona
274
274
275
275
## Saving to the Feature Store
276
276
277
-
To save a transformation function to the feature store, use the function `create_transformation_function`. It creates a [`TransformationFunction`](http://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/transformation_functions_api/) object which can then be saved by calling the save function.
277
+
To save a transformation function to the feature store, use the function `create_transformation_function`. It creates a [`TransformationFunction`](https://docs.hopsworks.ai/hopsworks-api/{{{hopsworks_version}}}/generated/api/transformation_functions_api/) object which can then be saved by calling the save function.
278
278
The save function will throw an error if another transformation function with the same name and version is already saved in the feature store.
0 commit comments