|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "e57c4da7", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "# Change this if needed to point to your MarkLogic instance.\n", |
| 11 | + "base_url = \"http://localhost\"\n", |
| 12 | + "\n", |
| 13 | + "# The admin account that can be used to create a new user and role.\n", |
| 14 | + "adminUser = \"admin\"\n", |
| 15 | + "adminPassword = \"admin\"\n", |
| 16 | + "\n", |
| 17 | + "# The user to create which will be used for all of the examples.\n", |
| 18 | + "user = \"python-blog-user\"\n", |
| 19 | + "password = \"pyth0n\"\n", |
| 20 | + "role_name = \"python-blog-role\"\n", |
| 21 | + "\n", |
| 22 | + "import json\n", |
| 23 | + "import requests\n", |
| 24 | + "from requests.auth import HTTPDigestAuth\n", |
| 25 | + "\n", |
| 26 | + "admin_session = requests.Session()\n", |
| 27 | + "admin_session.auth = HTTPDigestAuth(adminUser, adminPassword)\n", |
| 28 | + "\n", |
| 29 | + "user_session = requests.Session()\n", |
| 30 | + "user_session.auth = HTTPDigestAuth(user, password)" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": null, |
| 36 | + "id": "be67fafe", |
| 37 | + "metadata": { |
| 38 | + "scrolled": true |
| 39 | + }, |
| 40 | + "outputs": [], |
| 41 | + "source": [ |
| 42 | + "# Create a MarkLogic role that allows a user to run all of the examples below. \n", |
| 43 | + "# See https://docs.marklogic.com/guide/security/intro for more information on MarkLogic security.\n", |
| 44 | + "\n", |
| 45 | + "admin_session.post(\n", |
| 46 | + " f\"{base_url}:8002/manage/v2/roles\",\n", |
| 47 | + " headers={\"Content-type\": \"application/json\"},\n", |
| 48 | + " data=json.dumps({\n", |
| 49 | + " \"role-name\":role_name, \n", |
| 50 | + " \"role\":[\"tde-admin\", \"rest-evaluator\", \"qconsole-user\"], \n", |
| 51 | + " \"privilege\":[\n", |
| 52 | + " {\"privilege-name\":\"xdmp:document-get\", \"action\":\"http://marklogic.com/xdmp/privileges/xdmp-document-get\", \"kind\":\"execute\"}, \n", |
| 53 | + " {\"privilege-name\":\"unprotected-collections\", \"action\":\"http://marklogic.com/xdmp/privileges/unprotected-collections\", \"kind\":\"execute\"}, \n", |
| 54 | + " {\"privilege-name\":\"any-uri\", \"action\":\"http://marklogic.com/xdmp/privileges/any-uri\", \"kind\":\"execute\"}\n", |
| 55 | + " ]\n", |
| 56 | + " })\n", |
| 57 | + ")" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": null, |
| 63 | + "id": "65ba6b95", |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [], |
| 66 | + "source": [ |
| 67 | + "# Create a new MarkLogic user with the role that was just created.\n", |
| 68 | + "\n", |
| 69 | + "admin_session.post(\n", |
| 70 | + " f'{base_url}:8002/manage/v2/users',\n", |
| 71 | + " headers={'Content-type': 'application/json'},\n", |
| 72 | + " data=json.dumps({\"user-name\": user, \"password\": password, \"role\":[role_name]}),\n", |
| 73 | + ")" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": null, |
| 79 | + "id": "36d53116", |
| 80 | + "metadata": {}, |
| 81 | + "outputs": [], |
| 82 | + "source": [ |
| 83 | + "# Load 500 JSON employee documents into the Documents database.\n", |
| 84 | + "\n", |
| 85 | + "r = requests.get(\"https://raw.githubusercontent.com/marklogic/marklogic-spark-connector/master/src/test/resources/500-employees.json\")\n", |
| 86 | + "\n", |
| 87 | + "for employee in json.loads(r.text):\n", |
| 88 | + " user_session.put(\n", |
| 89 | + " f'{base_url}:8000/v1/documents',\n", |
| 90 | + " params={'uri': employee['uri'], 'collection': 'employee'},\n", |
| 91 | + " data=json.dumps(employee['value'])\n", |
| 92 | + " )\n", |
| 93 | + "\n", |
| 94 | + "print(\"Finished loading employees.\")" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "code", |
| 99 | + "execution_count": null, |
| 100 | + "id": "b99041a8", |
| 101 | + "metadata": {}, |
| 102 | + "outputs": [], |
| 103 | + "source": [ |
| 104 | + "# Search all employee documents, printing out the response from MarkLogic.\n", |
| 105 | + "\n", |
| 106 | + "r = user_session.get(\n", |
| 107 | + " f'{base_url}:8000/v1/search',\n", |
| 108 | + " headers={'Accept': 'application/json'},\n", |
| 109 | + " params={'collection': 'employee'}\n", |
| 110 | + ")\n", |
| 111 | + "print(json.dumps(json.loads(r.text), indent=2))" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "code", |
| 116 | + "execution_count": null, |
| 117 | + "id": "5e280dce", |
| 118 | + "metadata": {}, |
| 119 | + "outputs": [], |
| 120 | + "source": [ |
| 121 | + "# Search employee documents containing \"San Jose\" and verify only 1 result is returned.\n", |
| 122 | + "\n", |
| 123 | + "r = user_session.get(\n", |
| 124 | + " f'{base_url}:8000/v1/search',\n", |
| 125 | + " headers={'Accept': 'application/json'},\n", |
| 126 | + " params={'collection': 'employee', 'q': '\"San Jose\"'}\n", |
| 127 | + ")\n", |
| 128 | + "results = json.loads(r.text)\n", |
| 129 | + "assert results['total'] == 1\n", |
| 130 | + "print(json.dumps(results, indent=2))" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": null, |
| 136 | + "id": "2c59059f", |
| 137 | + "metadata": {}, |
| 138 | + "outputs": [], |
| 139 | + "source": [ |
| 140 | + "# Update an employee to contain the phrase \"San Jose\".\n", |
| 141 | + "\n", |
| 142 | + "url = f'{base_url}:8000/v1/documents'\n", |
| 143 | + "uri = '/data/employees/093caccf-f7ed-4572-a8fa-6390caf4d20e.json'\n", |
| 144 | + "\n", |
| 145 | + "r = user_session.get(url, params={'uri': uri})\n", |
| 146 | + "doc = json.loads(r.text)\n", |
| 147 | + "doc['City'] = 'San Jose'\n", |
| 148 | + "doc['State'] = 'CA'\n", |
| 149 | + "user_session.put(url, params={'uri':uri}, data=json.dumps(doc))" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": null, |
| 155 | + "id": "e7be39a6", |
| 156 | + "metadata": {}, |
| 157 | + "outputs": [], |
| 158 | + "source": [ |
| 159 | + "# Search for San Jose again and verify that 2 results are now returned.\n", |
| 160 | + "\n", |
| 161 | + "r = user_session.get(\n", |
| 162 | + " f'{base_url}:8000/v1/search',\n", |
| 163 | + " headers={'Accept': 'application/json'},\n", |
| 164 | + " params={'collection': 'employee', 'q': '\"San Jose\"'}\n", |
| 165 | + ")\n", |
| 166 | + "results = json.loads(r.text)\n", |
| 167 | + "assert results['total'] == 2\n", |
| 168 | + "print(json.dumps(results, indent=2))" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "id": "3cef35af", |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "# Load a TDE template into the Schemas database. \n", |
| 179 | + "# This creates a view projecting rows from the employee documents.\n", |
| 180 | + "# See https://docs.marklogic.com/guide/app-dev/TDE for more information.\n", |
| 181 | + "\n", |
| 182 | + "template = {\n", |
| 183 | + " \"template\": {\n", |
| 184 | + " \"context\": \"/\",\n", |
| 185 | + " \"collections\": [\"employee\"],\n", |
| 186 | + " \"rows\": [\n", |
| 187 | + " {\n", |
| 188 | + " \"schemaName\": \"example\",\n", |
| 189 | + " \"viewName\": \"employee\",\n", |
| 190 | + " \"columns\": [\n", |
| 191 | + " {\"name\": \"GivenName\", \"scalarType\": \"string\", \"val\": \"GivenName\"},\n", |
| 192 | + " {\"name\": \"Surname\", \"scalarType\": \"string\", \"val\": \"Surname\"},\n", |
| 193 | + " {\"name\": \"BaseSalary\", \"scalarType\": \"double\", \"val\": \"BaseSalary\"},\n", |
| 194 | + " {\"name\": \"City\", \"scalarType\": \"string\", \"val\": \"City\"},\n", |
| 195 | + " {\"name\": \"Department\", \"scalarType\": \"string\", \"val\": \"Department\"},\n", |
| 196 | + " ],\n", |
| 197 | + " }\n", |
| 198 | + " ],\n", |
| 199 | + " }\n", |
| 200 | + "}\n", |
| 201 | + "\n", |
| 202 | + "user_session.put(\n", |
| 203 | + " f'{base_url}:8000/v1/documents',\n", |
| 204 | + " data=json.dumps(template),\n", |
| 205 | + " headers={'Content-Type': 'application/json'},\n", |
| 206 | + " params={\n", |
| 207 | + " 'uri': '/employee-template.json',\n", |
| 208 | + " 'collection': 'http://marklogic.com/xdmp/tde',\n", |
| 209 | + " 'database': 'Schemas'\n", |
| 210 | + " }\n", |
| 211 | + ")" |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "cell_type": "code", |
| 216 | + "execution_count": null, |
| 217 | + "id": "d1c4c057", |
| 218 | + "metadata": {}, |
| 219 | + "outputs": [], |
| 220 | + "source": [ |
| 221 | + "# Retrieve employees as JSON rows using an Optic query, printing the response from MarkLogic.\n", |
| 222 | + "# See https://docs.marklogic.com/11.0/guide/optic-guide/en/getting-started-with-optic.html for more information.\n", |
| 223 | + "\n", |
| 224 | + "optic_query = 'op.fromView(\"example\", \"employee\").where(op.eq(op.col(\"City\"), \"San Jose\"))'\n", |
| 225 | + "r = user_session.post(\n", |
| 226 | + " f'{base_url}:8000/v1/rows?column-types=header', \n", |
| 227 | + " headers={\n", |
| 228 | + " 'Content-type': 'application/vnd.marklogic.querydsl+javascript',\n", |
| 229 | + " 'Accept': 'application/json'\n", |
| 230 | + " },\n", |
| 231 | + " data=optic_query\n", |
| 232 | + ")\n", |
| 233 | + "results = json.loads(r.text)\n", |
| 234 | + "print(json.dumps(results, indent=2))" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "cell_type": "code", |
| 239 | + "execution_count": null, |
| 240 | + "id": "f0debd3a", |
| 241 | + "metadata": {}, |
| 242 | + "outputs": [], |
| 243 | + "source": [ |
| 244 | + "# Retrieve employees as CSV data and create a pandas DataFrame.\n", |
| 245 | + "\n", |
| 246 | + "import pandas as pd\n", |
| 247 | + "import io\n", |
| 248 | + "\n", |
| 249 | + "query = 'op.fromView(\"example\", \"employee\", \"\").where(op.eq(op.col(\"City\"), \"San Jose\"))'\n", |
| 250 | + "r = user_session.post(\n", |
| 251 | + " f'{base_url}:8000/v1/rows', \n", |
| 252 | + " headers={\n", |
| 253 | + " 'Content-type': 'application/vnd.marklogic.querydsl+javascript',\n", |
| 254 | + " 'Accept': 'text/csv'\n", |
| 255 | + " },\n", |
| 256 | + " data=query\n", |
| 257 | + ")\n", |
| 258 | + "\n", |
| 259 | + "df = pd.read_csv(io.StringIO(r.text))\n", |
| 260 | + "print(df.head())" |
| 261 | + ] |
| 262 | + }, |
| 263 | + { |
| 264 | + "cell_type": "code", |
| 265 | + "execution_count": null, |
| 266 | + "id": "d2b55d7d", |
| 267 | + "metadata": {}, |
| 268 | + "outputs": [], |
| 269 | + "source": [ |
| 270 | + "# Cleanup = delete the user and role and the 500 documents.\n", |
| 271 | + "\n", |
| 272 | + "admin_session.delete(f'{base_url}:8002/manage/v2/roles/{role_name}')\n", |
| 273 | + "admin_session.delete(f'{base_url}:8002/manage/v2/users/{user}')\n", |
| 274 | + "admin_session.delete(\n", |
| 275 | + " f'{base_url}:8000/v1/search',\n", |
| 276 | + " params={'collection': 'employee'}\n", |
| 277 | + ")" |
| 278 | + ] |
| 279 | + } |
| 280 | + ], |
| 281 | + "metadata": { |
| 282 | + "kernelspec": { |
| 283 | + "display_name": "Python 3 (ipykernel)", |
| 284 | + "language": "python", |
| 285 | + "name": "python3" |
| 286 | + }, |
| 287 | + "language_info": { |
| 288 | + "codemirror_mode": { |
| 289 | + "name": "ipython", |
| 290 | + "version": 3 |
| 291 | + }, |
| 292 | + "file_extension": ".py", |
| 293 | + "mimetype": "text/x-python", |
| 294 | + "name": "python", |
| 295 | + "nbconvert_exporter": "python", |
| 296 | + "pygments_lexer": "ipython3", |
| 297 | + "version": "3.11.3" |
| 298 | + } |
| 299 | + }, |
| 300 | + "nbformat": 4, |
| 301 | + "nbformat_minor": 5 |
| 302 | +} |
0 commit comments