@@ -52,7 +52,7 @@ def diffeomorphic_tensor_pipeline(name='DiffeoTen',
5252 params = {'array_size' : (128 , 128 , 64 )}):
5353 """
5454 Workflow that performs a diffeomorphic registration
55- (Rigid and Affine follwed by Diffeomorphic)
55+ (Rigid and Affine followed by Diffeomorphic)
5656 Note: the requirements for a diffeomorphic registration specify that
5757 the dimension 0 is a power of 2 so images are resliced prior to
5858 registration. Remember to move origin and reslice prior to applying xfm to
@@ -143,7 +143,7 @@ def diffeomorphic_tensor_pipeline(name='DiffeoTen',
143143
144144 return wf
145145
146-
146+ '''
147147def apply_diffeo(name='ApplyDiffeo', params={'array_size': (128, 128, 64)}):
148148
149149 """
@@ -167,10 +167,9 @@ def apply_diffeo(name='ApplyDiffeo', params={'array_size': (128, 128, 64)}):
167167 outputnode = pe.Node(niu.IdentityInterface(
168168 fields=['out_file']),
169169 name='outputnode')
170- origin_node = pe .Node (dtitk .TVAdjustVoxSp (origin = (0 , 0 , 0 )),
170+ origin_node = pe.Node(dtitk.SVAdjustVoxSp (origin=(0, 0, 0)),
171171 name='origin_node')
172- reslice_node_pow2 = pe .Node (dtitk .TVResample (
173- origin = (0 , 0 , 0 ),
172+ reslice_node_pow2 = pe.Node(dtitk.SVResample(
174173 array_size=params['array_size']),
175174 name='reslice_node_pow2')
176175 apply_xfm_node = pe.Node(dtitk.DiffeoScalarVol(), name='apply_xfm_node')
@@ -183,4 +182,4 @@ def apply_diffeo(name='ApplyDiffeo', params={'array_size': (128, 128, 64)}):
183182 wf.connect(inputnode, 'xfm_file', apply_xfm_node, 'transform')
184183 wf.connect(apply_xfm_node, 'out_file', outputnode, 'out_file')
185184
186- return wf
185+ return wf'''
0 commit comments