diff --git a/properties/P000226.md b/properties/P000226.md new file mode 100644 index 000000000..b15ceccc3 --- /dev/null +++ b/properties/P000226.md @@ -0,0 +1,21 @@ +--- +uid: P000226 +name: Artinian +refs: + - zb: "0392.54005" + name: Finite $T_0$-spaces and universal mappings. (HolsztyƄski, Pedersen) +--- + +A space for which every collection of open sets has a minimal element. + +Equivalently: +- Every collection of closed sets has a maximal element. +- The open sets satisfy the *descending chain condition*: There is no infinite strictly decreasing sequence $O_1 \supsetneq O_2 \supsetneq \cdots$ of open sets. +- The closed sets satisfy the *ascending chain condition*: There is no infinite strictly increasing sequence $Y_1 \subsetneq Y_2 \subsetneq \cdots$ of closed sets. + +See Section 1 of {{zb:0392.54005}}. + +---- +#### Meta-properties + +- This property is hereditary. diff --git a/theorems/T000823.md b/theorems/T000823.md new file mode 100644 index 000000000..3c6885b16 --- /dev/null +++ b/theorems/T000823.md @@ -0,0 +1,9 @@ +--- +uid: T000823 +if: + P000129: true +then: + P000226: true +--- + +All collections of open sets are finite. diff --git a/theorems/T000824.md b/theorems/T000824.md new file mode 100644 index 000000000..685690fcd --- /dev/null +++ b/theorems/T000824.md @@ -0,0 +1,11 @@ +--- +uid: T000824 +if: + and: + - P000078: false + - P000002: true +then: + P000226: false +--- + +Pick distinct $x_1,x_2,\dots\in X$. Then $\{x_1\}\subsetneq \{x_1,x_2\}\subsetneq\{x_1, x_2, x_3\} \subsetneq \dots$ is an infinite ascending chain of closed subsets. diff --git a/theorems/T000825.md b/theorems/T000825.md new file mode 100644 index 000000000..ae671e426 --- /dev/null +++ b/theorems/T000825.md @@ -0,0 +1,9 @@ +--- +uid: T000825 +if: + P000078: true +then: + P000226: true +--- + +Immediate from the definitions. diff --git a/theorems/T000826.md b/theorems/T000826.md new file mode 100644 index 000000000..72963bddf --- /dev/null +++ b/theorems/T000826.md @@ -0,0 +1,9 @@ +--- +uid: T000826 +if: + P000226: true +then: + P000090: true +--- + +For any $x \in X$, the collection of open neighborhoods of $x$ must have a minimal element.