Skip to content

Need help with evaluating model! #286

@aryan1107

Description

@aryan1107

Hi I am new to this, I am successfully able to train and evaluate my model, however now I am wondering how do I recompute the same metrics and performance gap using fairness indicators.

My model is something like this:

def model_func():   
    model = tf.keras.models.Sequential([
        keras.layers.Dense(units = 14, input_dim=14, activation='relu'),
        keras.layers.Dense(units = 28, activation='relu'),
        keras.layers.Dense(units = 1,  activation='sigmoid')
        ])

    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

    return model

Then I train model and test it on test data-set.

# Geting my trained model
model = model_func()

# Training my model
train = model.fit(X_train, y_train, epochs=50, batch_size=10, verbose = 1)

Now how do I recompute the same metrics and performance gap using fairness indicators?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions