diff --git a/AAAAsindy_analysis_with_metrics.csv b/AAAAsindy_analysis_with_metrics.csv new file mode 100644 index 00000000..0ad115b8 --- /dev/null +++ b/AAAAsindy_analysis_with_metrics.csv @@ -0,0 +1,267 @@ +participant_id,x_learning_rate_reward_x_learning_rate_reward,x_value_reward_not_chosen_x_value_reward_not_chosen,x_value_choice_not_chosen_x_value_choice_not_chosen,x_learning_rate_reward_c_reward,x_value_choice_chosen_c_value_reward,x_learning_rate_reward_c_value_choice,x_value_choice_not_chosen_1,x_learning_rate_reward_c_value_reward,x_value_choice_not_chosen_c_value_reward,x_value_reward_not_chosen_1,x_value_choice_chosen_x_value_choice_chosen,x_value_choice_chosen_1,x_value_reward_not_chosen_c_value_choice,x_learning_rate_reward_1,beta_reward,beta_choice,params_x_learning_rate_reward,params_x_value_reward_not_chosen,params_x_value_choice_chosen,params_x_value_choice_not_chosen,total_params,embedding_0,embedding_1,embedding_2,embedding_3,embedding_4,embedding_5,embedding_6,embedding_7,embedding_8,embedding_9,embedding_10,embedding_11,embedding_12,embedding_13,embedding_14,embedding_15,embedding_16,embedding_17,embedding_18,embedding_19,embedding_20,embedding_21,switch_rate,stay_after_reward,perseveration,avg_reward,n_trials,slcn_age - years,nll_spice,nll_rnn,trial_likelihood_spice,trial_likelihood_rnn,bic_spice,aic_spice,n_parameters_spice,metric_n_trials +11.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.6360785655983182,0.31277803393909354,0.0,0.9136806532057612,0.0,0.9960700897375743,4.549638271331787,0.0,1,1,1,1,4,-0.062183578,0.030527903,-0.025696738,-0.0067087263,0.038423713,0.0070444806,1.8100819e-09,-0.003006696,0.011882757,-0.041326515,0.017333437,-0.012372755,-0.017115675,-0.0004963616,0.02913499,-0.12677468,0.039821398,2.6145877e-09,1.9148356e-09,-0.18820658,-0.0004649375,-0.0014721112,0.34,0.9811320754716981,0.66,0.5346534653465347,101,10.28884326,168.74922609796283,164.16718370336852,0.43370434558086624,0.44365465191029463,360.52430312586614,347.49845219592567,5,101 +360.0,0.0,0.0,0.0,0.0,1.0896995431730603,0.0,0.7871230681785223,0.0,0.0,-0.1734971282560588,0.0,0.0,0.6574100141027746,0.9841633079449328,3.321892738342285,0.0,1,2,1,1,5,-0.04265427,0.054450132,-0.016545933,0.03376626,-0.029956978,-0.07675548,-8.8221996e-10,0.07609873,0.07334589,-0.07050777,-0.07796301,0.022865724,-0.030630857,-0.0010950065,-0.095132895,0.081954256,-0.030392986,-6.483304e-10,6.7169416e-11,-0.18820648,-0.001025825,0.15652925,0.35384615384615387,0.9428571428571428,0.6461538461538462,0.5419847328244275,131,26.56005753,191.70627102066055,201.49461352750043,0.48108884138554336,0.46344692467186066,412.6177487440546,395.4125420413211,6,131 +301.0,0.0,0.0,0.0,0.0,0.0,0.0,0.341694124964966,0.0,0.0,0.19233479693120833,0.0,0.3813594888647399,0.0,0.9971739157040902,5.358229637145996,2.8956174850463867,1,1,1,1,4,-0.09964208,0.1079548,-0.041662846,0.04756721,0.09188513,-0.017073486,-3.23035e-09,0.053496346,-0.044257805,-0.10523082,-0.08754709,-0.060316827,-0.079441935,-0.0024109993,-0.11076877,-0.11323171,0.11504353,5.0761435e-09,-5.964138e-10,0.10341052,-0.0021673783,0.12858586,0.1937984496124031,1.0,0.8062015503875969,0.5615384615384615,130,25.0,165.94738358827283,168.11117112544093,0.5282111511971673,0.5238334821057311,361.0536416027157,343.89476717654566,6,130 +73.0,0.0,0.7507784122424817,0.0,0.0,1.0239153219015136,0.0,-0.10853242809839962,0.0,1.0300596883387783,0.1293318631781824,0.0,0.0,0.0,0.6435257802903652,4.737279891967773,1.0645545721054077,1,2,1,2,6,0.10224114,0.014985408,0.042792358,-0.0059626577,0.023574574,0.0070093456,-1.4593601e-09,0.104611814,0.0401224,-0.008203609,0.0081525035,-0.032916233,-0.0028060854,-0.0003952224,-0.013371957,0.23228312,0.067131445,-5.0077065e-10,1.974108e-09,-0.08099539,-0.0003732311,-0.012557479,0.09230769230769231,0.9885057471264368,0.9076923076923077,0.6717557251908397,131,12.67351129,71.3653268530818,63.124613522925245,0.7615596757115303,0.7858937770401571,181.67092930980826,158.7306537061636,8,131 +202.0,0.0,0.0,0.0,0.0,0.8834654610755954,0.0,0.0,0.0,0.0,0.3209102181686606,0.0,0.21659380694149366,0.0,0.9821249347925187,6.399155616760254,5.094822406768799,1,1,2,0,4,0.025982948,-0.041323245,0.009562546,-0.024548447,0.10219494,0.1452664,-4.7524505e-11,-0.1222329,-0.12886974,0.053021476,0.06157115,-0.07967665,0.023167985,0.0008819865,0.08292283,0.034592908,0.15712886,-1.609281e-10,1.0293158e-10,0.32489195,0.0008196964,-0.11323654,0.11538461538461539,1.0,0.8846153846153846,0.6106870229007634,131,17.3963039,130.20437324735013,129.154452028106,0.6083753371367231,0.6108181910347934,289.6139531974338,272.40874649470027,6,131 +214.0,0.0,0.0,0.0,0.0,0.676710940179447,0.0,-0.09402533549239953,0.0,0.9607523292910538,0.6203835901608036,0.0,0.0,0.0,0.9957435427109396,1.995006799697876,1.4747157096862793,1,1,1,2,5,-0.08179905,-0.11725759,-0.034391887,0.0040447162,-0.15617368,0.017859153,-7.916888e-10,-0.07684102,0.010726864,0.1502338,-0.008986021,0.09541857,0.06589286,0.0024629622,-0.020229504,0.4014242,-0.164085,-5.598334e-10,-8.219423e-10,-0.03968816,0.0022912645,-0.037499268,0.5153846153846153,0.7162162162162162,0.4846153846153846,0.5725190839694656,131,11.87953457,178.78052669492305,187.5455084897386,0.5054185290760715,0.4887898915431868,391.6337945430352,371.5610533898461,7,131 +425.0,0.0,0.0,0.0,0.0,0.0,0.0,0.8796757191746953,0.0,0.0,0.0,0.0,0.629625810603096,0.4125543819818614,0.9212322936455407,1.2052855491638184,1.1495959758758545,1,1,1,1,4,0.018300045,0.05115943,0.016029382,0.056447662,-0.12722561,-0.19904636,1.7117856e-09,0.1271086,0.12226484,-0.060162388,-0.11920051,0.10370394,-0.028723486,-0.0010021256,-0.15261397,0.00032128012,-0.1680519,-7.561642e-09,-2.8847675e-09,-0.072430894,-0.0009412155,0.20708142,0.4140625,0.8103448275862069,0.5859375,0.4573643410852713,129,31.0,174.15014324651605,155.75679637702518,0.5091561379142813,0.5467801302193915,377.4124680765498,360.3002864930321,6,129 +311.0,0.0,0.5856939136126302,0.0,0.0,0.9943538406422336,0.0,0.0,0.0,0.0,0.3314090989865744,0.0,0.0,0.0,0.6487671078244842,7.126938343048096,3.8175477981567383,1,2,1,0,4,0.07203234,0.023026217,0.045799784,-0.028858103,0.13187861,0.13106483,5.401647e-10,0.12111394,0.07721733,-0.024670243,0.07125178,-0.11997561,-0.011193644,-0.00035762414,0.094105095,0.2704422,0.23379505,1.0338573e-09,-1.5492216e-09,0.19625792,-0.0003390708,-0.10993843,0.14615384615384616,1.0,0.8538461538461538,0.5954198473282443,131,25.0,70.65033207421182,140.98184565513498,0.7636408010948519,0.5838573162244916,170.5058708511571,153.30066414842364,6,131 +142.0,0.0,0.7489929643761336,0.0,0.0,1.0135997903826324,0.0,0.0,0.0,0.0,0.20132958045829055,0.0,0.0,0.0,0.6896755520751077,4.539148807525635,3.6072616577148438,1,2,1,0,4,0.03609624,0.020269552,0.07822225,-0.030537337,0.007919931,0.004145013,4.563779e-09,0.15136968,0.13161635,-0.016376665,0.074453436,-0.034638375,-0.013458761,-0.00023651368,0.09875704,0.2166357,0.048943162,-1.0967248e-08,-1.3375936e-09,0.17508005,-0.00021792004,-0.119380414,0.07692307692307693,1.0,0.9230769230769231,0.648854961832061,131,12.50376454,72.24373832428853,93.44636684153566,0.7590106582059575,0.700006595181025,173.69268335131056,156.48747664857706,6,131 +213.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5024204053308652,0.0,0.809100928155239,0.0,0.978179284731547,2.615793228149414,0.0,1,1,1,0,3,-0.008974903,-0.0067631076,-0.0031316825,-0.032769788,-0.06252488,-0.057073623,-2.1849507e-11,0.054762192,0.072616875,0.0057848576,0.08235385,0.07160419,0.0037701018,0.00014514614,0.11114467,-0.102456085,-0.10109389,-9.2467745e-10,6.2612034e-11,-0.18820733,0.00013678115,-0.11873352,0.5461538461538461,0.7076923076923077,0.45384615384615384,0.4961832061068702,131,11.87953457,204.5875977699779,216.45189549412143,0.45800796976829117,0.437730316986571,428.6453333417781,417.1751955399558,4,131 +42.0,0.0,0.0,0.0,0.0,0.9735915212945966,0.0,0.0,0.0,0.0,0.7725154785408219,0.0,0.0,0.0,0.6274279518425462,5.672091484069824,1.8713998794555664,1,1,1,0,3,0.084885195,-0.022629907,0.047862396,-0.028728282,0.05326789,0.10021394,-3.3985642e-10,0.077410474,0.053021472,0.03073414,0.06843831,-0.061612558,0.01353996,0.00049176934,0.08470086,0.267733,0.11697787,-7.5034007e-10,3.789839e-09,0.00026182187,0.0004547972,-0.11497166,0.23846153846153847,0.92,0.7615384615384615,0.5725190839694656,131,12.83778234,134.0294456980318,151.01212512462948,0.5995578753309571,0.5619276595900203,292.3965636483415,278.0588913960636,5,131 +205.0,0.0,0.0,0.0,0.0,1.0792278858891091,0.0,0.020777097337319972,0.0,1.0815594645654703,0.17041248780176002,0.0,0.0,0.47883260224750807,0.9864750623702997,2.3979737758636475,1.2575637102127075,1,2,1,2,6,-0.030839665,-0.026744004,-0.012951198,0.017774303,-0.09446753,-0.059639372,-2.373348e-09,0.0047603576,0.02417199,0.010364605,-0.020848205,0.07426714,0.030316487,0.0007463834,-0.027627785,0.09048076,-0.10964462,1.9977147e-09,2.0074664e-09,-0.061557483,0.000567854,0.040925603,0.3,0.9135802469135802,0.7,0.6183206106870229,131,17.01574264,139.93547474238102,143.08790278322928,0.5861937776820556,0.5791828584745244,318.8112250884067,295.87094948476204,8,131 +427.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.0815600854704529,0.0,1.0088448665374072,0.6891256475129655,0.0,0.9956508446019131,0.0,0.9969578037659328,7.654004096984863,2.783869981765747,1,1,1,2,5,-0.13644105,0.0632785,-0.055933885,-0.0051826416,0.1960992,0.124534294,-1.6227456e-09,0.053936083,0.076916546,-0.06842011,0.009104027,-0.14403369,-0.03832708,-0.0011610272,0.010727929,-0.1700521,0.261866,9.807321e-11,2.0399358e-09,0.09215648,-0.0010898693,0.0008537323,0.4307692307692308,1.0,0.5692307692307692,0.5343511450381679,131,20.41666667,414.6760449017878,411.8688865082429,0.20541293766597368,0.20762563538617948,863.4248309567647,843.3520898035756,7,131 +159.0,0.0,0.0,0.0,0.0,0.7861862502253402,0.0,0.0,0.0,0.0,0.3575986213732922,0.0,0.2727576080595588,0.0,0.9608280897140504,2.424604654312134,0.0,1,1,2,0,4,0.009425847,-0.0016374073,0.0060887025,-0.025392102,-0.07548937,-0.0712063,-7.7952955e-10,0.053850826,0.07327729,-0.0056845816,0.06394897,0.07646867,0.0026695034,7.739789e-05,0.0863391,-0.04064425,-0.11019213,2.2835889e-09,1.0773026e-09,-0.1882083,7.290088e-05,-0.08254161,0.4418604651162791,0.7971014492753623,0.5581395348837209,0.5307692307692308,130,13.38809035,165.90650297742025,169.64550022014632,0.5282942100134103,0.5207513048379561,356.11206797664886,341.8130059548405,5,130 +76.0,0.0,0.8373535502422357,0.0,0.0,0.7703073799613699,0.0,0.0,0.0,0.772950518956952,0.1646493025518463,0.0,0.0,0.0,0.9470742885271708,2.9833297729492188,0.0,1,2,1,1,5,-0.052972533,-0.0002893063,-0.020249344,-0.009055626,-0.08160711,-0.040972088,-3.514696e-10,0.11503707,0.15661754,-0.0016846695,0.022714406,0.04083956,0.0011534711,8.7393266e-05,0.030709835,0.4127625,-0.058964316,6.778768e-11,-4.3882997e-10,-0.18820648,8.041085e-05,-0.029270535,0.4,0.8985507246376812,0.6,0.5267175572519084,131,8.238193018,191.8836461790647,183.04960544054072,0.4807632523378922,0.49724987323248626,412.9724990608629,395.7672923581294,6,131 +442.0,0.0,0.39289706006966546,0.0,0.0,0.5341424261485399,0.0,0.0,0.0,0.4580595910928056,0.5450341403772861,0.0,0.48282414192696266,0.0,0.9950035701195393,4.198519229888916,0.6210231781005859,1,2,2,1,6,-0.14346682,-0.009427848,-0.05963153,-0.017943926,0.0121101625,0.019308122,2.0726548e-10,0.034283407,0.13127275,0.010282475,0.043225024,0.0034814633,0.006027109,0.00027047613,0.06160892,-0.105691426,0.0057020583,-3.7397577e-10,6.1735134e-10,-0.12566333,0.00025166664,-0.06802016,0.5769230769230769,0.7910447761194029,0.4230769230769231,0.5114503816793893,131,21.5,319.40056343152804,323.5134977003266,0.2955000952007538,0.2908974898676953,677.7414024667007,654.8011268630561,8,131 +78.0,0.0,0.0,0.0,0.0,0.9198031262724748,0.0,0.0,0.0,0.0,0.607376922831487,0.0,0.0,0.0,0.9943524968624113,1.1276450157165527,0.793237566947937,1,1,1,0,3,-0.091621906,-0.052463286,-0.037798677,-0.021785602,-0.17866604,-0.08662373,-3.983507e-10,0.019540258,0.09038093,0.06592586,0.054300945,0.1302933,0.02961055,0.0010888885,0.072853126,0.24188781,-0.19904779,-5.1801735e-10,1.43371e-10,-0.108319655,0.0010124294,-0.105965436,0.4153846153846154,0.8070175438596491,0.5846153846153846,0.44274809160305345,131,10.72142368,179.6051546446152,178.33603931658294,0.5038302579483548,0.5062767078082585,383.5479815415083,369.2103092892304,5,131 +170.0,0.0,0.8058632741451329,0.0,0.0,0.873045370724363,0.0,0.0,0.0,0.7660866350875957,0.12743103076787457,0.0,0.1806095153196178,0.0,0.9641724006334934,3.8997433185577393,3.776191234588623,1,2,2,1,6,-0.031079128,0.006819887,-0.0039562723,-0.007385899,-0.004031535,-0.020373922,1.7609867e-09,0.08392664,0.09955903,-0.007236738,0.017076932,-0.0028661238,-0.0023208712,-2.6575786e-05,0.02191235,-0.022176806,-0.007667396,5.1384825e-09,-1.2917544e-09,0.19209293,-2.6443873e-05,-0.031440813,0.07692307692307693,1.0,0.9230769230769231,0.6412213740458015,131,13.54140999,63.82800562099342,78.56756953358504,0.7837867156053161,0.7409099251374578,166.5962868456315,143.65601124198685,8,131 +220.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5788531269485686,0.0,0.0,0.5029269406030009,0.0,0.8964999145890283,0.0,0.8455018408099809,6.343750476837158,2.1643171310424805,1,1,1,1,4,0.084367566,0.025214251,0.049902327,0.005990659,0.11395831,0.11000108,-2.403567e-09,0.02845438,-0.01953902,-0.025942244,-0.02966169,-0.07991313,-0.014688267,-0.00017148077,-0.019552696,-0.09413675,0.16188529,7.933947e-09,7.303384e-10,0.029761449,-0.00016184711,0.03744407,0.27692307692307694,0.9864864864864865,0.7230769230769231,0.5725190839694656,131,16.47364819,179.29380980732995,160.60373790663004,0.5044293350131839,0.5417279363315017,387.7928263173934,370.5876196146599,6,131 +426.0,0.0,0.0,0.0,0.0,0.9867523743253996,0.0,-0.036340313626456046,0.0,1.1021733692241376,0.44752690066461975,0.0,0.137089597679656,0.0,0.9337644586960471,6.352937698364258,2.5916848182678223,1,1,2,2,6,0.10161571,-0.1658459,0.03272231,0.01593747,0.074744575,0.25718617,-7.106717e-10,-0.16605602,-0.1446739,0.21320811,-0.03916445,-0.057666205,0.09289567,0.0035699725,-0.054601464,0.041236177,0.11324779,-2.3701485e-10,-5.83861e-11,0.072801545,0.00332258,-0.025105381,0.33076923076923076,0.9863013698630136,0.6692307692307692,0.5572519083969466,131,20.08333333,249.78751037880642,258.91719716265743,0.38543317620044865,0.37223363269905696,538.5152963612575,515.5750207576128,8,131 +43.0,0.0,0.0,0.0,0.0,0.9868531155584048,0.0,0.10654025247150677,0.0,1.0085718733061855,0.41921498359844445,0.0,0.13304278562551558,0.0,0.9933647390206655,4.852553844451904,0.4067871570587158,1,1,2,2,6,-0.041782435,-0.02480619,-0.017694145,0.013603795,0.030719798,0.06162938,2.389253e-10,-0.05649818,-0.037623078,0.031812668,-0.034121327,-0.0218587,0.013943492,0.0004940394,-0.04588148,0.05320721,0.0528392,4.9048066e-10,-1.6379467e-10,-0.14723898,0.0004582469,0.041506734,0.45384615384615384,0.9411764705882353,0.5461538461538461,0.5190839694656488,131,11.95619439,277.11036312980644,276.7468852070466,0.34726290253251735,0.3477450017478461,593.1610018632575,570.2207262596129,8,131 +349.0,0.0,0.0,0.0,0.0,0.960775524789741,0.0,0.7814206198350945,0.0,0.0,0.23004122938101104,0.0,0.0,0.0,0.9985139811038974,6.94244384765625,0.0,1,1,1,1,4,-0.104898565,0.023475545,-0.044560794,0.032918174,0.1355109,0.12668982,6.7611233e-10,-0.14808568,-0.14174686,-0.031486448,-0.080078796,-0.10433091,-0.011652975,-0.00034801866,-0.10584036,0.11621832,0.21443345,2.6418348e-10,1.0830726e-09,-0.18820798,-0.00032450884,0.13671607,0.4076923076923077,1.0,0.5923076923076923,0.5343511450381679,131,26.0,363.8930120441271,375.87295325238097,0.24934828469418185,0.23820358005251632,752.1236963405321,737.7860240882542,5,131 +320.0,0.0,0.46727860255371245,0.0,0.0,1.3174530473310364,0.3277808431532555,0.0,0.0,0.0,0.47449166864035486,0.0,-0.21567376526728202,0.0,0.412014009013686,4.96026086807251,3.4423789978027344,2,2,2,0,6,0.06980557,-0.017764868,0.047070198,-0.035492726,0.0233674,0.063789435,6.3393363e-10,0.095507346,0.07968357,0.030413598,0.08833685,-0.038312603,0.010125234,0.00052950386,0.11870367,0.21237002,0.064206205,3.8735615e-09,1.7986216e-09,0.15847477,0.0004928604,-0.16288851,0.17692307692307693,0.9594594594594594,0.823076923076923,0.5725190839694656,131,26.0,113.52003310071076,146.315382081682,0.6483772545489598,0.5720918881985989,265.9803418050662,243.04006620142152,8,131 +189.0,0.0,0.0,0.0,0.0,1.0547743029475558,0.0,0.8903048073760903,0.0,0.0,0.5459983300504877,0.0,0.06643312060418986,0.0,0.932320813934008,2.443382978439331,1.4651209115982056,1,1,2,1,5,0.05068757,-0.05174817,0.021256473,0.03134419,-0.09175574,-0.02609703,-8.913188e-10,-0.009120528,-0.012051097,0.06608134,-0.072530314,0.070523225,0.028982908,0.0010854749,-0.09617768,0.04979174,-0.1262032,7.204105e-10,-1.767291e-09,-0.04065444,0.0010101817,0.08857657,0.46923076923076923,0.7936507936507936,0.5307692307692308,0.48091603053435117,131,16.30663929,174.03555961110692,178.1021283537285,0.5146553317493675,0.5067289083871175,382.14386037540294,362.07111922221384,7,131 +18.0,0.0,0.0,0.0,0.0,1.106563251697846,0.0,-0.1429021475879271,0.0,1.0469241177659856,0.5149961439861503,0.0,0.0,0.0,0.852714934845765,2.912982702255249,2.7646377086639404,1,1,1,2,5,0.05390463,-0.011324427,0.064094335,0.0044205757,-0.07067401,-0.017816842,-1.9863653e-09,0.053442452,0.008101536,0.020887887,-0.0071457834,0.043247573,0.017292704,0.00095627294,-0.027245393,0.08851354,-0.08883389,6.383233e-09,6.4335637e-10,0.09021959,0.0009376833,-0.034530953,0.15483870967741936,0.978494623655914,0.8451612903225807,0.6025641025641025,156,12.63791923,141.85190382813192,138.35583425518075,0.6346678181994584,0.6418194876485968,319.00778347469856,297.70380765626385,7,156 +173.0,0.0,0.0,0.0,0.0,0.6056444093312947,0.0,-0.05552624767810769,0.0,1.1217761783145648,0.24666791092841883,0.0,0.44167854139794294,0.566424835341908,0.9704570748408632,7.794838905334473,3.136838912963867,1,2,2,2,7,-0.02234543,0.057089638,-0.002084295,0.0031122514,0.19742715,0.13164885,6.9201506e-10,0.072616786,0.049194276,-0.065692574,-0.0099372985,-0.15142606,-0.03184982,-0.0009150696,-0.018978357,-0.06780763,0.27398524,-2.3902094e-09,-7.401566e-10,0.1277039,-0.00085759227,0.021307757,0.2923076923076923,1.0,0.7076923076923077,0.6412213740458015,131,15.52635181,296.06232733294075,261.213353712948,0.3230303869466823,0.3689856468013241,635.9324647199818,610.1246546658815,9,131 +457.0,0.0,0.0,0.0,0.0,0.9957001263640864,0.0,0.09368579046620774,0.0,1.1052558770702006,0.4739038181743494,0.0,0.0,0.0,0.7625585511326787,9.219598770141602,1.8508182764053345,1,1,1,2,5,0.15030581,-0.14359078,0.05829742,0.020897035,0.2068166,0.36686745,1.3384275e-09,-0.117778026,-0.12778142,0.1831142,-0.051044695,-0.1686955,0.081142105,0.0031073545,-0.06901345,0.1952064,0.33151874,5.613323e-10,8.800144e-11,-0.0018109487,0.0028941792,0.012031592,0.16923076923076924,1.0,0.8307692307692308,0.648854961832061,131,18.41666667,162.41454130282858,145.01159261775717,0.5379967125181352,0.5749458818496975,358.90182375884626,338.82908260565716,7,131 +56.0,0.0,0.0,0.0,0.0,1.108144636240312,0.0,-0.09335712793064431,0.0,1.0533407454509798,0.23368461364553933,0.0,0.0,0.4843349157338536,0.870630260507265,4.716876029968262,4.72552490234375,1,2,1,2,6,0.00010482794,0.036490563,0.13564876,0.0024395988,0.028648948,0.015970511,3.957366e-09,0.10528038,-0.03442956,0.007975503,-0.0012766839,-0.03898749,-0.00855453,0.0007707121,-0.10302309,0.09005966,0.052618764,3.0136693e-09,1.8147984e-08,0.2877001,0.00060486636,-0.07391035,0.10852713178294573,0.9873417721518988,0.8914728682170543,0.6153846153846154,130,11.15947981,68.77979783789495,77.36201545605579,0.7675607235704733,0.7426382626684846,176.43809491068328,153.5595956757899,8,130 +206.0,0.0,0.5446294045578631,0.0,0.0,0.6115991886453634,0.0,0.0,0.0,0.35039495467717696,0.4019603275828841,0.0,0.41104088062606103,0.0,0.9980767031510664,3.7194738388061523,0.0,1,2,2,1,6,-0.22440656,0.007053698,-0.09249712,-0.024819333,-0.0061490564,-0.021083781,-1.1948196e-09,0.062370814,0.17689353,-0.013308205,0.060446795,0.025484333,-0.0035302434,-0.00014364517,0.087131925,-0.10175784,-0.01863336,-2.382884e-09,-5.6033905e-10,-0.18820685,-0.00013501244,-0.08007035,0.6230769230769231,0.696969696969697,0.3769230769230769,0.5114503816793893,131,8.227241615,301.05703889973825,356.01729490270986,0.3169305331154518,0.256957484679821,636.1868189526656,616.1140777994765,7,131 +455.0,0.0,0.0,0.0,0.0,0.9990396244004631,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.9966934218009322,4.925735950469971,2.7437379360198975,1,0,1,0,2,-0.046168856,0.02113087,-0.020547427,-0.002096857,0.038607087,0.030935181,-3.9732554e-11,-0.17831208,-0.19339275,-0.027988799,0.0051922766,-0.03490815,-0.011235054,-0.00039001805,0.0069277724,0.10998435,0.070141256,4.0026274e-10,7.602406e-11,0.08811478,-0.0003639162,0.00043205172,0.16923076923076924,1.0,0.8307692307692308,0.549618320610687,131,20.25,127.92185984139627,122.63191218292988,0.6136985861268228,0.6262154902299666,275.31385748461486,263.84371968279254,4,131 +127.0,0.0,0.0,0.0,0.0,0.945269706350334,0.0,-0.08256959436835853,0.0,0.6091489505199784,0.8131591685639575,0.0,0.11085365148787783,0.0,0.9680782550573342,7.0657525062561035,3.4748547077178955,1,1,2,2,6,-0.0033456606,-0.113086455,-0.005114366,-0.009356016,0.12498429,0.23644218,9.0395263e-10,-0.06190371,-0.0033315734,0.14636096,0.016918946,-0.09681576,0.06306648,0.0022821412,0.008749767,-0.04486097,0.17875367,3.7611864e-10,-1.212996e-09,0.16174538,0.002126703,-0.10486754,0.3769230769230769,0.9629629629629629,0.6230769230769231,0.6183206106870229,131,12.91991786,309.44739423994355,309.4243368146357,0.30694186179786925,0.3069688755401645,657.8350640835317,634.8947884798871,8,131 +419.0,0.0,0.0,0.3532856837434069,0.0,0.9366441039253844,0.0,0.3671822284154571,0.0,0.0,0.0,0.0,0.13749295949078305,0.0,0.9901070088148112,3.70798921585083,3.017333984375,1,0,2,2,5,-0.03984382,0.035540357,-0.016606398,0.03327976,-0.008118717,-0.03767252,1.0603259e-09,0.0027643717,0.0025506685,-0.032377865,-0.06030445,0.0061169094,-0.015095026,0.0005839525,-0.09374827,-0.05463589,-0.018752528,-6.0561423e-09,-7.1882886e-09,0.11566857,0.0008210129,0.04274693,0.16153846153846155,1.0,0.8384615384615385,0.5801526717557252,131,18.0,96.70413209440058,98.38935591186805,0.6913564505531765,0.6869238117798603,227.48100534199023,207.40826418880116,7,131 +125.0,0.0,0.0,0.0,0.0,0.7080185265315612,0.0,0.0,0.0,0.0,0.20196204017037928,0.0,0.33430361569780664,0.0,0.9863019831975288,3.235574960708618,3.6003551483154297,1,1,2,0,4,-0.006890461,-0.006346952,-0.0022121002,-0.028250875,-0.037984423,-0.031334836,-9.681453e-11,-0.044272073,-0.042366676,0.0074409484,0.07117025,0.026713619,0.004118545,0.0002064477,0.09592553,-0.041295577,-0.062654674,-2.7623699e-09,-7.601671e-10,0.17438449,0.00019280218,-0.11433721,0.1076923076923077,0.9866666666666667,0.8923076923076924,0.5725190839694656,131,14.04517454,107.06102054929698,103.60340546302885,0.6645601741323691,0.6733885031240694,243.32724780132747,226.12204109859397,6,131 +429.0,0.0,0.0,0.0,0.0,0.9890960788798047,0.0,0.0,0.0,0.8355851411700536,0.18300144907622834,0.0,0.0,0.0,0.9979993561903625,3.2736997604370117,0.0,1,1,1,1,4,-0.09205152,-0.014692319,-0.039354596,-0.0015455243,-0.056969393,-0.008775556,-4.0334683e-10,-0.12529248,-0.099809065,0.017975558,0.0038822193,0.03724941,0.008804683,0.00040607978,0.00533727,0.22507949,-0.05280227,1.3509293e-09,1.6177264e-09,-0.18820713,0.00037861272,-0.0100425035,0.35384615384615387,0.9393939393939394,0.6461538461538462,0.5038167938931297,131,19.0,212.196631614152,217.68701707228993,0.4448977459120913,0.43567162312242397,448.73093548058193,434.393263228304,5,131 +421.0,0.0,0.0,0.0,0.0,1.003054442314986,0.0,-0.1940676332777388,0.0,1.0266895984818916,0.4856755998621022,0.0,0.0,0.0,0.8615883163611093,7.023336410522461,3.4734373092651367,1,1,1,2,5,0.098806,-0.09130121,0.028420184,0.00077034975,0.10775693,0.22982605,-1.6833489e-09,-0.04613706,-0.1486917,0.118672684,-0.004268419,-0.09907183,0.053598616,0.0020847323,-0.029436788,0.19313334,0.18647203,3.2562064e-09,1.8949207e-09,0.16160265,0.0019503239,-0.054620463,0.2153846153846154,0.9868421052631579,0.7846153846153846,0.5801526717557252,131,20.5,144.1237908130293,163.6745005807599,0.5768974230450364,0.5354156947412048,322.3203227792477,302.2475816260586,7,131 +310.0,0.0,0.0,0.0,0.0,0.9959675351518518,0.0,0.37597068506379255,0.0,0.0,0.4329164536501651,0.0,0.0,0.0,0.9974034827947618,6.965513229370117,3.5223617553710938,1,1,1,1,4,-0.12317457,0.052905414,-0.0513078,-0.0015826293,0.13197611,0.108240165,2.2780187e-09,0.017601712,0.059306666,-0.050084934,-0.000321245,-0.11372886,-0.03273784,-0.00046734317,-0.02543492,0.20043302,0.22636868,-2.3920848e-09,7.8532114e-10,0.16652982,-0.000442348,-0.006504882,0.2,1.0,0.8,0.6030534351145038,131,30.0,155.2710481462417,143.30095016236072,0.5528671240472071,0.5787120827704235,339.7473029952169,322.5420962924834,6,131 +176.0,0.0,0.0,0.0,0.0,0.9636962557867992,0.0,0.9223207998352135,0.0,0.0,0.22991338471903847,0.0,0.0,0.0,0.9979304260015482,6.245246887207031,2.4697670936584473,1,1,1,1,4,-0.0675561,-0.026772417,-0.029657673,0.04676773,0.094392434,0.1303868,2.5907058e-11,-0.19789185,-0.19121777,0.034219045,-0.11637963,-0.077941485,0.0151391225,0.0005749177,-0.157555,0.091645725,0.14908554,-2.827667e-10,-2.1854168e-10,0.060523238,0.0005331219,0.1622423,0.3333333333333333,0.9878048780487805,0.6666666666666666,0.6384615384615384,130,16.82409309,272.94727389614854,278.6770431209345,0.3500087211306822,0.3423797488305148,575.0534222184672,557.8945477922971,6,130 +98.0,0.0,0.0,0.0,0.0,0.42372459658139927,0.0,0.0,0.0,0.0,0.6395371532360447,0.0,0.6193650330594912,0.0,0.9967280366023379,2.982652187347412,2.680720329284668,1,1,2,0,4,-0.076983,-0.12068625,-0.03434052,-0.010935861,-0.0689973,0.057932008,2.5300864e-09,-0.108923964,-0.02827385,0.15583865,0.020954233,0.05953732,0.06724732,0.0024805064,0.029017467,-0.12294513,-0.11613421,-7.9198714e-10,-1.075928e-09,0.08176828,0.0023080579,-0.10303423,0.26153846153846155,0.9701492537313433,0.7384615384615385,0.5190839694656488,131,13.83709788,164.83816817649486,149.11637099548142,0.5330429301700372,0.5660083466358558,358.8815430557232,341.6763363529897,6,131 +25.0,0.0,0.0,0.0,0.0,1.042577910405658,0.0,0.6674365672260196,0.0,0.0,0.0,0.0,0.0,0.0,0.7776936063170429,5.752483367919922,2.3874940872192383,1,0,1,1,3,0.11774964,0.0427539,0.06414603,0.030860716,0.085843004,0.048428573,-1.6362759e-09,-0.03550965,-0.13651985,-0.053614583,-0.067281894,-0.07062335,-0.023419527,-0.0007720407,-0.086405404,0.03850244,0.1336411,-7.586581e-10,-8.369523e-10,0.05223754,-0.0007201526,0.11358908,0.16923076923076924,1.0,0.8307692307692308,0.5877862595419847,131,13.86995209,89.5564148394275,100.6186301569133,0.7104772318205453,0.6811037921144099,203.45050193113292,189.112829678855,5,131 +208.0,0.0,0.0,0.0,0.0,0.940940098671986,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.9972388525803881,5.766330718994141,0.0,1,0,1,0,2,-0.11856683,0.025900126,-0.048719358,-0.013401346,0.064005755,0.064618684,4.5101634e-10,0.014765309,0.05355228,-0.034254957,0.033792626,-0.0663335,-0.013743291,-0.0004903316,0.045591556,0.33674908,0.14246088,9.595742e-11,3.1843098e-10,-0.18820657,-0.00045712534,-0.03731606,0.3046875,0.9878048780487805,0.6953125,0.6434108527131783,129,15.54004107,296.14181195274637,262.48466676006257,0.31732256081806137,0.3615400593405993,606.8397146972516,598.2836239054927,3,129 +112.0,0.0,0.0,0.0,0.0,0.0,0.06148033132005621,0.6879114348357259,0.0,0.0,0.6210789980497647,0.0,0.8497147385636353,0.0,0.8009707056496862,4.208605766296387,2.412137031555176,2,1,1,1,5,0.0762866,-0.034703735,0.03405945,0.0115340995,0.0050716014,0.034004074,3.4923777e-09,0.022262033,0.00080720906,0.044480775,-0.028687818,-0.0022892854,0.020466221,0.00070600683,-0.041129928,-0.052772302,0.00033317358,4.4804996e-10,9.010651e-10,0.054719318,0.0006567009,0.019225704,0.3333333333333333,0.9285714285714286,0.6666666666666666,0.5461538461538461,130,9.149897331,185.94175827979146,177.8348019610376,0.48911354956279157,0.5046046601199529,405.9022033901146,385.8835165595829,7,130 +52.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.12069990965375901,0.0,1.1260511023920654,0.5293459353040293,0.0,0.8627898635777334,0.0,0.9799000167846675,4.4688262939453125,1.8913249969482422,1,1,1,2,5,0.007925158,-0.031336278,0.002163919,0.0056021195,0.022698253,0.048686307,-1.3294575e-09,-0.034399167,-0.023861244,0.04107904,-0.014535787,-0.007842318,0.01757181,0.00058962434,-0.013038924,-0.108329535,0.015918389,-2.8985978e-09,2.679455e-09,0.0022684757,0.0005491432,0.0041252766,0.375,0.9565217391304348,0.625,0.5348837209302325,129,8.145106092,194.9766773351443,199.7174798756955,0.4696706589390639,0.4611191731954542,423.9175665177259,403.9533546702886,7,129 +149.0,0.0,0.0,0.0,0.0,1.0842527897986138,0.0,0.7672979934368138,0.0,0.0,0.667576580541987,0.0,0.0,0.0,0.9891898524761198,2.384185791015625e-06,1.8329476118087769,1,1,1,1,4,-0.047936864,-0.09690597,-0.019899292,0.01848104,-0.22921972,-0.12701198,3.1793598e-10,-0.01191936,0.06622466,0.1079814,-0.041686825,0.16609725,0.06177633,0.0017662182,-0.067275584,0.18427382,-0.2912655,3.1516558e-09,4.443177e-09,-0.0036106987,0.0016523158,0.020042302,0.43548387096774194,0.6785714285714286,0.5645161290322581,0.448,125,11.23613963,157.81565645375966,166.9467741399126,0.53191976120675,0.5128421932869992,344.55300230114955,327.6313129075193,6,125 +109.0,0.0,0.7303958201184408,0.0,0.0,0.7561287862228786,0.016902959603004895,0.0,0.0,0.9859638376707974,0.17821569315858582,0.0,0.3110592039042973,0.0,0.9100192427175909,3.241793155670166,1.5967042446136475,2,2,2,1,7,0.00853737,-0.00068368873,0.01933399,0.004276161,-0.04214958,-0.015205479,-4.5173985e-09,0.075217724,0.07590879,-0.0022486704,-0.0065539135,0.0352089,0.007090869,0.0005600354,-0.0065431506,-0.037014432,-0.06435261,1.8005515e-09,5.4057434e-09,-0.027402721,0.00060514506,0.007565215,0.2846153846153846,0.9259259259259259,0.7153846153846154,0.6259541984732825,131,9.952087611,153.58658219343783,133.3843309767381,0.5564331011929102,0.6010359676421876,350.9809744409759,325.17316438687567,9,131 +412.0,0.0,0.0,0.0,0.0,0.0,0.0,0.4055339920727614,0.0,0.0,0.36888636317241147,0.0,0.686539443490789,0.0,0.9088889559110008,7.2626190185546875,2.4995956420898438,1,1,1,1,4,0.046930026,0.02002798,0.07008084,0.013347196,0.15449457,0.14626263,1.6455489e-09,0.013561309,-0.08899561,-0.019638369,-0.020737413,-0.12086004,-0.0152077675,-0.00046550346,-0.022499543,0.043334432,0.22975948,-3.2592469e-09,3.1655512e-09,0.063527256,-0.00043237707,0.032409396,0.26153846153846155,1.0,0.7384615384615385,0.5801526717557252,131,20.25,173.81307017237887,167.52318439433856,0.5150925607892037,0.5276081203461831,376.83134704749125,359.62614034475774,6,131 +75.0,0.0,0.0,0.0,0.0,0.9217728107683336,0.0,0.011847617766809693,0.0,1.0631028283579256,0.12159585124243216,0.0,0.1529827063488318,0.5710612092927757,0.9953461557626723,4.62169885635376,3.5003886222839355,1,2,2,2,7,-0.08194552,0.040308,-0.03392422,0.0082749305,0.032823175,0.015161067,7.645832e-09,0.011755535,0.04154648,-0.018583095,-0.02364244,-0.024115652,-0.012573206,3.113716e-05,-0.06248401,-0.04193064,0.043599892,-1.2313679e-08,-3.8987045e-09,0.1643169,9.963576e-05,-0.0035287978,0.15503875968992248,1.0,0.8449612403100775,0.6,130,8.824093087,113.03767120119238,134.16776434189498,0.6474198519444173,0.596885567701977,269.8136540416398,244.07534240238476,9,130 +165.0,0.0,0.0,0.0,0.0,1.0439876048037429,0.0,0.0,0.0,0.7784308969108364,0.2811594216627318,0.0,0.0,0.6598527116793221,0.9474844596783318,4.30549430847168,3.888021469116211,1,2,1,1,5,-0.011217414,0.014712619,-0.003636411,-0.0070067137,0.007439296,0.00030767213,-5.3369362e-09,0.1024171,0.058052342,-0.0013863719,0.0122349365,-0.017650215,-0.0064963647,0.0002978739,-0.0066037346,0.08867196,0.02534775,-1.0225481e-08,-7.18173e-09,0.20335531,0.00037225563,-0.04653269,0.13846153846153847,0.9882352941176471,0.8615384615384616,0.648854961832061,131,14.6036961,71.20072690654219,98.33438810797821,0.7620382713840327,0.6870679440491421,176.47419496627344,156.40145381308437,7,131 +325.0,0.0,0.0,0.0,0.0,0.969868851879229,0.0,0.0,0.0,0.0,0.28570104457662254,0.0,0.07281873473861647,0.0,0.9079198690255474,4.189369201660156,1.5969858169555664,1,1,2,0,4,0.069498956,0.00067099306,0.026110074,-0.0065151905,0.0054957373,0.009482498,1.0614006e-09,-0.015720928,-0.034594357,-0.0013712756,0.015995681,-0.0042340695,0.00010907992,3.4980158e-06,0.021439627,0.034360524,0.010652682,-1.6694467e-09,-8.006263e-10,-0.027374359,1.5297256e-06,-0.024641614,0.17692307692307693,1.0,0.823076923076923,0.5725190839694656,131,25.0,90.8472676998141,92.56262041440131,0.70698537693185,0.7023717587013756,210.8997421023617,193.6945353996282,6,131 +151.0,0.0,0.7235304904377379,0.0,0.0,0.0,0.0,-0.07700313910881448,0.0,1.000873694421862,0.1713875817889148,0.0,0.8386593587758641,0.0,0.9595862561464302,3.9589014053344727,0.9617195725440979,1,2,1,2,6,-0.011803826,0.018939579,-0.0034908387,-0.0019929009,0.005644934,-0.010434409,-1.1440033e-09,0.071810514,0.0989271,-0.030469814,0.0031711352,0.010579138,-0.008701314,-0.00028527138,0.01787022,-0.09365595,-0.0045141364,5.7506377e-09,-1.0537291e-09,-0.091351874,-0.00027156912,0.0043385574,0.4496124031007752,0.8714285714285714,0.5503875968992248,0.5461538461538461,130,12.64339493,210.63796975444265,196.26158197148106,0.4447931049989971,0.47008006940486063,460.15443874377866,437.2759395088853,8,130 +418.0,0.0,0.0,0.0,0.0,0.0,0.0,0.678947001975964,0.0,0.0,0.07644459453289529,0.0,0.9733287807305637,0.5942000648598043,0.9956251732508338,1.8880879878997803,0.0,1,2,1,1,5,-0.08969262,0.023753718,-0.03688777,0.012637583,-0.08279314,-0.12826325,-1.14393654e-10,0.0620147,0.09060734,-0.031117886,-0.031024756,0.09281283,-0.014044047,-0.0005352722,-0.038257387,-0.18233752,-0.14309657,-1.2594945e-09,-4.3205087e-10,-0.18820666,-0.00050049776,0.06098477,0.4959349593495935,0.7368421052631579,0.5040650406504065,0.46774193548387094,124,26.0,190.4916324124147,194.62518873744932,0.46388833130201595,0.45622052138101016,409.8563709570639,392.9832648248294,6,124 +175.0,0.0,0.0,0.0,0.0,0.9019189476939798,0.0,0.7077700153351789,0.0,0.0,0.4363053885839854,0.24951726189380516,0.0,0.0,0.802563159863154,4.330600738525391,1.5645010471343994,1,1,2,1,5,0.08926956,0.070104465,0.039309166,0.019724838,0.0039793793,0.054287124,-1.6735362e-08,0.05757189,0.040159717,-0.05243057,-0.072296925,-0.0024996635,-0.042239513,0.0016262699,-0.050460782,-0.014735417,0.0070251185,-3.0178807e-08,-6.2885688e-09,-0.030645894,0.0008460065,0.07184992,0.23076923076923078,0.9726027397260274,0.7692307692307693,0.5572519083969466,131,16.82409309,125.16015681061431,111.01129563583056,0.6202017056378532,0.6546155022006785,284.3930547744177,264.3203136212286,7,131 +92.0,0.0,0.9410858786751127,0.0,0.0,0.9549563006695703,0.0,0.0,0.0,0.5969875577101279,0.11329275407659527,0.0,0.0,0.0,0.9416683200001715,2.140260696411133,1.418122410774231,1,2,1,1,5,-0.09492181,-0.0036022782,-0.041782435,-0.030348558,-0.07451094,-0.09091822,-1.6450792e-09,0.14193472,0.18283384,0.008165893,0.05796922,0.07938518,0.00494981,-0.00093595375,0.0624058,-0.0022739812,-0.13975027,3.1626752e-09,-1.07873275e-08,-0.045387648,-0.0005025643,-0.05296378,0.31007751937984496,0.8831168831168831,0.689922480620155,0.6,130,14.1026694,149.53675921471324,149.00312150683206,0.5626253183186808,0.5637812660433145,333.0922052599582,313.0735184294265,7,130 +32.0,0.0,0.0,0.0,0.0,1.0323348583859855,0.0,-0.15639480305344106,0.0,0.7326508367513462,0.6173851360943801,0.0,0.07011652761342144,0.0,0.9961762231588361,5.307399749755859,3.8690435886383057,1,1,2,2,6,-0.1247284,0.015156163,-0.05101113,-0.021367777,0.04460668,0.0765793,2.6828337e-09,0.062378295,0.04920716,0.0014550891,0.021947872,-0.054620594,-0.008294102,9.47707e-05,-0.0077914665,0.12909997,0.08612499,1.25244775e-08,1.4847283e-09,0.20144406,0.000105844185,-0.09097169,0.23870967741935484,1.0,0.7612903225806451,0.5641025641025641,156,11.321013,230.7658121115272,242.33719003806536,0.4772885648844546,0.459911240780342,501.87902515840835,477.5316242230544,8,156 +87.0,0.0,0.0,0.0,0.0,0.6363544459833774,0.0,0.49427588200539224,0.0,0.0,0.2120140223798146,0.0,0.38032272762298885,0.0,0.9984362675746281,3.2340614795684814,2.09456467628479,1,1,2,1,5,-0.108096726,0.015586292,-0.045510627,0.022755848,-0.029393887,-0.051775727,-3.1184083e-10,-0.079018585,-0.05605054,-0.021211084,-0.054607533,0.02816311,-0.007959066,-0.00022812808,-0.0736082,-0.08310098,-0.055766705,1.04127505e-11,-6.1514144e-10,0.02273669,-0.00021321878,0.08197771,0.1875,0.975609756097561,0.8125,0.6434108527131783,129,12.13963039,112.1101273654663,108.75292387875305,0.6475654707545916,0.656046924877834,258.1844665783699,238.2202547309326,7,129 +148.0,0.0,0.0,0.297107013835518,0.0,0.0,0.0,0.4854244184627075,0.0,0.0,0.4220674780125801,0.0,0.7231572770003305,0.0,0.818570157686869,3.649571418762207,5.686674118041992,1,1,1,2,5,0.10275847,-0.007775225,0.05103996,0.022991445,-0.027355041,-0.00928843,1.0745872e-09,0.0061644744,-0.039802574,0.011538077,-0.05297975,0.0022059751,0.0034896033,0.00026655797,-0.10571913,0.04095817,-0.033413514,-4.2078834e-09,-9.350563e-10,0.38449717,0.00024673995,0.016032668,0.16153846153846155,0.9642857142857143,0.8384615384615385,0.648854961832061,131,13.49486653,99.1851766892953,118.71211038678913,0.6848404574519197,0.6356547824077818,232.44309453177968,212.3703533785906,7,131 +117.0,0.0,0.0,0.0,0.0,0.633605894115795,0.0,0.6633073282381361,0.0,0.0,0.5031797769526177,0.0,0.25201200804158486,0.0,0.9967165482044212,2.932476043701172,0.6449581384658813,1,1,2,1,5,-0.0909865,-0.0015308757,-0.03786888,0.02767577,-0.045085426,-0.05312817,-1.1174651e-09,-0.0034494167,0.028320454,0.0012934078,-0.06543583,0.050892077,0.0008441484,3.7663547e-05,-0.079197824,-0.10588518,-0.07815458,-1.7374344e-10,1.733291e-09,-0.12325285,3.3945027e-05,0.10971142,0.45384615384615384,0.859375,0.5461538461538461,0.4961832061068702,131,8.689938398,202.6940332774803,206.28836967063611,0.4613301423410555,0.4550444422244264,439.4608077081497,419.3880665549606,7,131 +204.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.062298546041898654,0.0,1.1549984750198519,0.3609734887263447,0.0,0.8274543557936939,0.0,0.9669900969664252,6.447258949279785,4.565829277038574,1,1,1,2,5,0.06466949,-0.052521966,0.024930255,0.01074683,0.11072931,0.15840137,-6.026918e-10,-0.12658231,-0.1516983,0.06457347,-0.0310436,-0.08167287,0.031756386,0.0012690421,-0.0673693,-0.093476996,0.1500015,1.3046484e-09,1.2356525e-09,0.27161714,0.0011818924,-0.03141532,0.15384615384615385,1.0,0.8461538461538461,0.5877862595419847,131,17.54414784,144.64129931430358,142.82863320431773,0.5757590464647316,0.5797562890856912,323.35533978179626,303.28259862860716,7,131 +353.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.6925036382914387,0.0,0.8572663507959789,0.0,0.9543845190604522,5.405038833618164,3.592413902282715,1,1,1,0,3,0.022537755,-0.074548386,0.013045704,-0.013747919,0.05867312,0.124469146,-1.8699373e-09,-0.036273275,-0.020470606,0.09531728,0.025628194,-0.048896287,0.042448886,0.0015437831,0.020538025,-0.0833751,0.06608778,8.8037805e-10,1.6980553e-09,0.17358474,0.0014377946,-0.10779911,0.33076923076923076,0.9848484848484849,0.6692307692307692,0.5038167938931297,131,28.0,226.38356476906853,216.96732839120887,0.42144777686685625,0.4368700161504833,477.10480179041497,462.76712953813706,5,131 +447.0,0.0,0.0,0.0,0.0,0.5585218744079596,0.0,0.6391713551703501,0.0,0.0,0.338888353253886,0.0,0.4338463636058837,0.0,0.9416999443372084,3.395362377166748,2.354130983352661,1,1,2,1,5,0.040863615,0.040919676,0.02865354,0.038480766,-0.021402577,-0.0501992,4.8751586e-10,0.022223732,-0.019838443,-0.03673678,-0.07469779,0.02047312,-0.008729675,0.00052292045,-0.08705136,-0.096470505,-0.041857224,-6.7093744e-09,-5.863455e-09,0.04887755,0.00016155142,0.06655598,0.19230769230769232,0.9733333333333334,0.8076923076923077,0.5801526717557252,131,18.91666667,128.83662992878513,118.35928768131375,0.6115596006307288,0.6365113645336347,291.74600101075936,271.67325985757026,7,131 +150.0,0.0,0.0,0.0,0.0,0.0,0.24403989737189288,-0.1983260028286955,0.0,0.9085902523807925,0.6765432606971383,0.0,0.9841084681916972,0.0,0.6664600574193024,3.523486614227295,1.0284342765808105,2,1,1,2,6,0.094225645,-0.11717878,0.030672684,-0.0017593108,-0.038648885,0.08157359,-6.610837e-10,-0.06254652,-0.039422847,0.15090837,0.0044541317,0.042080894,0.06544425,0.00241957,0.015394079,-0.14871614,-0.078510575,2.089108e-09,1.3260797e-09,-0.08463305,0.00224888,-0.050224856,0.4076923076923077,0.8529411764705882,0.5923076923076923,0.5267175572519084,131,11.88774812,207.3449488004707,197.81108901481062,0.45321305936158096,0.4700086611142905,453.630173204586,430.6898976009414,8,131 +84.0,0.0,0.5540985867940972,0.0,0.0,0.0,0.0,0.0,0.0,0.8327578496904556,0.31608046662920064,0.0,0.9328826545986028,0.0,0.9754247148831676,3.3704471588134766,0.8921447396278381,1,2,1,1,5,-0.036743097,0.009312687,-0.012685526,-0.005876354,-0.021778375,-0.029918043,1.3713893e-09,0.07738727,0.11118607,-0.034183502,0.010386056,0.035122745,-9.100755e-05,0.00016500447,0.046476737,-0.12656915,-0.05004091,-2.1943598e-10,-9.05003e-09,-0.09835874,0.00021725245,0.012336182,0.421875,0.9230769230769231,0.578125,0.5116279069767442,129,10.24229979,234.43691247735615,212.44883481593112,0.40305985543940853,0.4389169357669826,502.8380368021496,482.8738249547123,7,129 +74.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.7408116661186602,0.0,0.8500199276346639,0.0,0.7211578910549475,8.500248908996582,2.7146146297454834,1,1,1,0,3,0.09340271,-0.027990716,0.044513986,-0.032313563,0.20598699,0.2315262,-5.9876315e-10,0.018209971,-0.0077477302,0.035657376,0.080714755,-0.15771878,0.016996171,0.00061219657,0.10864927,0.005599156,0.31075135,9.2142904e-10,8.607038e-10,0.08518177,0.0005695439,-0.13970782,0.16923076923076924,0.9887640449438202,0.8307692307692308,0.6793893129770993,131,10.53524983,135.0851334218355,148.2435608512145,0.5971469118889301,0.5678970550747422,294.5079390959489,280.170266843671,5,131 +428.0,0.0,0.0,0.0,0.0,0.9999708501265137,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.9966070570548364,2.43837308883667,0.1373203992843628,1,0,1,0,2,-0.07879616,0.0049541406,-0.03311876,-0.005389993,-0.080814384,-0.071522556,-6.206147e-10,-0.062510155,-0.04070391,-0.006646186,0.013470729,0.06814941,-0.0025795286,-4.4746535e-05,0.01819518,0.05824924,-0.108570926,-8.566361e-10,-5.580774e-10,-0.17437692,-4.1851392e-05,-0.015695186,0.2923076923076923,0.9402985074626866,0.7076923076923077,0.5190839694656488,131,20.91666667,167.01665687394967,165.9968819254052,0.5286291376603005,0.5306907149204955,353.50345154972166,342.03331374789934,4,131 +161.0,0.0,0.0,0.0,0.0,1.210298601159904,0.0,0.0,0.0,0.0,0.674415254373614,0.0,-0.12295054037517356,0.0,0.7335414764285086,5.705109596252441,5.107129096984863,1,1,2,0,4,0.056597617,-0.010280833,0.08477976,-0.026315419,0.056122553,0.08682744,-8.57698e-11,0.09503714,0.031213012,0.014268309,0.06415385,-0.06993222,0.0073971725,0.00030493175,0.081876315,0.24448676,0.12378609,-2.5138458e-09,-6.831621e-10,0.32613134,0.0002821833,-0.110561654,0.13846153846153847,1.0,0.8615384615384616,0.5954198473282443,131,17.81245722,98.45879160691493,166.9602501911013,0.6867417861596378,0.5287429598975701,226.12278991656336,208.91758321382986,6,131 +303.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.8604016810269949,0.0,0.0,0.9689910478206967,0.0,0.9756486374139783,7.1013007164001465,0.0,1,0,1,1,3,0.0621146,0.04059193,0.024733957,-0.0015039272,0.15919921,0.12171963,-5.356247e-10,-0.13165292,-0.192715,-0.050296053,0.0057114065,-0.10913397,-0.023125768,-0.00065614993,0.014742405,-0.13142908,0.22303255,1.5651765e-10,9.816681e-10,-0.18820664,-0.00061115314,0.022465605,0.27692307692307694,1.0,0.7230769230769231,0.5648854961832062,131,30.0,227.32213753908331,226.83176279256213,0.4199407091617825,0.4207274311195206,474.11441287998895,462.64427507816663,4,131 +424.0,0.0,0.4757833765565277,0.0,0.0,0.0,-0.027476914544362494,0.10350373292016743,0.0,0.9370176409603173,-0.10196281327912436,0.0,0.976837955539426,0.6302212763942212,0.8845321748918616,3.0564815998077393,1.9053189754486084,2,3,1,2,8,0.0072228564,0.047392022,0.0066877175,0.014997989,-0.023670737,-0.098474644,1.0583524e-09,0.18697391,0.109790474,-0.04446035,-0.032437764,0.030496418,-0.028681763,-0.0009303257,-0.03202331,-0.18855712,-0.057135843,2.5984632e-09,-6.089248e-09,0.0036778015,-0.00076120376,0.062380735,0.2846153846153846,0.9538461538461539,0.7153846153846154,0.5038167938931297,131,20.5,167.73927919804598,159.67921323420504,0.5271731342102361,0.5436429193344748,384.1539029006478,355.47855839609196,10,131 +53.0,0.0,0.0,0.0,0.0,0.5046658969763383,0.0,0.0,0.0,0.0,0.9404657443231559,0.0,0.0,0.0,0.9893776516119629,4.254634857177734,6.156433582305908,1,1,1,0,3,-0.10420214,-0.1397829,-0.04596622,-0.030348385,-0.06751089,0.17698805,9.070761e-09,-0.052269787,0.03599407,0.17520784,0.074168965,-0.0073761153,0.0996855,0.004623665,0.097403534,0.4392619,-0.032052256,-3.521981e-08,2.9208831e-08,0.43180656,0.0035661059,-0.31179473,0.4186046511627907,0.8840579710144928,0.5813953488372093,0.5307692307692308,130,10.05065024,209.52751468753763,219.32548845248175,0.4466968704904124,0.4301765509436237,443.35409139688363,429.05502937507526,5,130 +420.0,0.0,0.0,0.0,0.0,0.0,0.0,0.18348479697825135,0.0,1.0094308414542383,0.5492423200687037,0.0,0.9347839517394704,0.0,0.996367516716322,3.202956199645996,0.7899682521820068,1,1,1,2,5,-0.07399031,-0.018008396,-0.031081183,0.021026043,-0.02764101,-0.027842533,5.135759e-10,-0.022100242,0.010194652,0.023058638,-0.050950736,0.048370477,0.009717927,0.0003386552,-0.06416078,-0.17499259,-0.065679565,4.9242062e-11,-5.318909e-10,-0.10864891,0.0003142143,0.073637746,0.46923076923076923,0.8852459016393442,0.5307692307692308,0.4732824427480916,131,18.91666667,214.26770696537437,217.36684778664068,0.44139475166123093,0.43620434806924224,462.60815508393785,442.53541393074875,7,131 +347.0,0.0,0.0,0.0,0.0,0.9660305946068243,0.0,0.5733918749431186,0.0,0.0,0.4161621166212502,0.0,0.15383251829260125,0.0,0.9078555613756176,7.222708702087402,4.353945255279541,1,1,2,1,5,0.062022004,0.009062882,0.05002661,0.012087848,0.14747515,0.14504315,-5.94473e-10,-0.008079733,-0.08924348,-0.00708164,-0.046066694,-0.12853742,-0.0031641242,0.000117825184,-0.10052852,0.06210001,0.22541332,-4.46726e-09,-3.0606502e-09,0.25027838,0.0001073537,-0.0044559357,0.23076923076923078,0.9868421052631579,0.7692307692307693,0.5801526717557252,131,27.0,186.2712893637746,184.3544876041003,0.4911728778834127,0.49477949393640447,406.6153198807383,386.5425787275492,7,131 +68.0,0.0,0.0,0.0,0.0,1.070130927775008,0.0,0.03168551901765155,0.0,1.0877384012737314,0.15826016349085745,0.0,0.0,0.5453881056727882,0.9952827769517895,2.128668785095215,0.2695751190185547,1,2,1,2,6,-0.087593146,-0.017904494,-0.036204685,0.0111355465,-0.10817233,-0.06873157,3.2912377e-09,0.015085298,0.05880794,0.013829436,-0.02119909,0.08207212,0.01422226,0.00040774216,-0.018950894,0.16861099,-0.13129623,-1.8295847e-09,-3.9916057e-10,-0.16105758,0.00037986695,0.050975945,0.38461538461538464,0.8636363636363636,0.6153846153846154,0.5038167938931297,131,8.443531828,172.8791159138754,172.9688502974614,0.5169319934354538,0.5167549757597003,384.69850743139546,361.7582318277508,8,131 +345.0,0.0,1.0327067004367638,0.0,0.0,0.207855843467112,0.0,0.0,0.0,0.13905357791337639,0.0,0.0,0.0,0.0,0.0,4.068819046020508,4.6352362632751465,0,1,1,1,3,-0.11615214,0.023821991,-0.03122624,-0.041282605,0.024896672,-0.08682781,6.3687446e-09,0.19822131,0.2550959,0.008883099,0.09475803,-0.01957552,-0.017517827,0.00027820328,0.10887917,-0.096857384,0.02928327,1.4042785e-08,5.4087237e-09,0.27860713,0.00027342615,-0.21391836,0.2076923076923077,0.9710144927536232,0.7923076923076923,0.5343511450381679,131,29.0,159.49137583678385,152.20563922373287,0.5440328166068533,0.5593736774510913,343.3204239258456,328.9827516735677,5,131 +57.0,0.0,0.13053521233858764,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.7242985507440909,0.0,0.9970546293767022,0.0,0.9508458815018338,2.7473161220550537,0.9990951418876648,1,2,1,0,4,-0.013722894,-0.023483114,-0.0018662567,-0.026709428,-0.05408203,-0.047011252,1.6425729e-10,0.07423654,0.107620396,0.027176876,0.06552148,0.058130547,0.013793089,0.0004262834,0.09281843,-0.17349496,-0.099657394,-2.6841058e-09,2.383823e-09,-0.08758779,0.00039686958,-0.09967062,0.46511627906976744,0.8103448275862069,0.5348837209302325,0.45384615384615384,130,10.80355921,194.77820739582586,183.10633658838574,0.47276967622718846,0.49447675271429775,418.71528921782175,401.5564147916517,6,130 +172.0,0.0,0.0,0.0,0.0,0.8350193227690569,0.0,0.0,0.0,0.0,0.34690136773929137,0.0,0.2838509464103831,0.0,0.9109265321493142,7.192366600036621,1.8308993577957153,1,1,2,0,4,0.11009614,-0.070415385,0.043299265,-0.016588693,0.13675359,0.20920868,3.9159773e-10,-0.13954233,-0.16818097,0.09025075,0.04128755,-0.103648804,0.039559994,0.0015396429,0.055650704,0.016216747,0.2024065,-1.1354016e-09,1.4746482e-10,-0.0038169771,0.0014344595,-0.096277505,0.2076923076923077,1.0,0.7923076923076923,0.6030534351145038,131,14.57357974,150.02959555735882,146.85635567856616,0.564038907963806,0.5709118602799237,329.26439781745114,312.05919111471763,6,131 +133.0,0.0,0.0,0.0,0.0,0.0,0.0,0.3279015944155563,0.0,0.0,0.22996700127736774,0.0,0.25747397879759454,0.0,0.9992766078313197,1.3131585121154785,1.6598306894302368,1,1,1,1,4,-0.19431771,0.046106316,-0.08030399,0.06599095,-0.10779431,-0.2334107,-1.1177857e-08,-0.0006811545,0.08320486,-0.074148156,-0.12317379,0.08454077,-0.02202748,-0.0010055065,-0.13462,-0.13667549,-0.15396081,3.1361378e-09,2.0473945e-09,-0.021045264,-0.00092077855,0.19995491,0.3671875,0.78125,0.6328125,0.5038759689922481,129,10.23682409,160.41942770711523,147.6095158876576,0.5369873575182527,0.5643222042117506,349.9510369977482,332.83885541423047,6,129 +155.0,0.0,0.0,0.0,0.0,1.0160107610746156,0.0,0.7538209277547411,0.0,0.0,0.0,0.0,0.0,0.6199209662876934,0.9935143297910685,0.9196357727050781,1.7275102138519287,1,1,1,1,4,-0.080399886,0.0019129078,-0.032940898,0.038592257,-0.17086159,-0.14945176,4.973025e-10,0.047681563,0.082282715,-0.006310651,-0.061563104,0.1160484,-0.00015367522,-4.2423053e-05,-0.12502891,0.19825971,-0.20486979,6.007381e-10,2.4881852e-09,-0.014229279,-4.3012624e-05,0.07672263,0.5538461538461539,0.6129032258064516,0.4461538461538462,0.4732824427480916,131,12.85147159,191.27870452764532,206.66131835066082,0.4818745871960082,0.45439716171206723,411.76261575802414,394.55740905529063,6,131 +309.0,0.0,0.0,0.0,0.0,0.9740429129016637,0.0,0.21723138214797422,0.0,0.9627260889672238,0.0,0.0,0.0,0.0,0.9941245947281524,4.314624786376953,0.0,1,0,1,2,4,-0.036580674,0.00039356272,-0.016192809,0.020524576,-0.0024068204,0.027554967,8.129022e-10,-0.11568404,-0.12117822,-0.0011492425,-0.04501159,-0.0030777203,0.0003173029,6.884543e-05,-0.052492596,0.20200168,0.024209721,2.0384494e-09,7.673202e-10,-0.18820648,6.320088e-05,0.08901028,0.34615384615384615,0.958904109589041,0.6538461538461539,0.5572519083969466,131,27.0,262.97191855610583,235.30509234668222,0.3665172789933147,0.4073383795840806,550.2815093644896,535.9438371122117,5,131 +219.0,0.0,0.0,0.0,0.0,0.7186814911801003,0.0,0.9857070041932536,0.0,0.0,0.0,0.0,0.30923545659296225,0.0,0.9967915175358453,0.9846417903900146,1.6008541584014893,1,0,2,1,4,-0.0886157,0.047829166,-0.03685063,0.07933559,-0.13050237,-0.21532364,9.585444e-10,0.0033326768,-0.0048583345,-0.06544824,-0.19832507,0.10844298,-0.026629275,-0.0008799381,-0.2673607,-0.07078489,-0.18658604,2.5373752e-09,2.399823e-09,-0.026984783,-0.0008219556,0.32450747,0.5658914728682171,0.6,0.43410852713178294,0.46153846153846156,130,15.50444901,180.23053887056864,193.02312753130815,0.49997640070120813,0.47597181230481744,389.6199521673073,372.4610777411373,6,130 +359.0,0.0,0.0,0.0,0.0,0.0,0.0,0.6137697769447317,0.0,0.0,0.6662342480592502,0.0,0.637234010895094,0.0,0.9314357101917261,6.182583808898926,3.2955052852630615,1,1,1,1,4,0.021477181,0.04473081,0.010529361,0.03206967,0.119768105,0.054251045,5.7981353e-10,0.084672175,0.050270732,-0.05450667,-0.07601198,-0.08992017,-0.02487259,-0.000857675,-0.1083005,-0.112884276,0.16217536,-1.02614424e-10,3.3549015e-09,0.14368314,-0.00080193125,0.10993898,0.46153846153846156,0.9154929577464789,0.5384615384615384,0.549618320610687,131,26.57150999,353.96654859075727,330.0206734588678,0.25897665382080814,0.2837615826623037,737.138303884248,719.9330971815145,6,131 +135.0,0.0,0.0,0.0,0.0,0.0,0.2815125952183297,0.0,0.0,0.0,0.7098663762261634,0.0,0.8420786597824739,0.0,0.46158590242283376,4.788106918334961,3.9678850173950195,2,1,1,0,4,0.10897038,-0.054340824,0.05390012,-0.027166491,0.01577567,0.09216702,-1.8745856e-09,0.03944656,-0.0042116255,0.07202595,0.06653132,-0.023366062,0.03301782,0.0012475833,0.08856147,0.12112064,0.034410093,1.7486126e-09,7.652458e-10,0.21139835,0.001160046,-0.13818264,0.1,1.0,0.9,0.5877862595419847,131,15.81930185,70.73464933629866,75.03010671237823,0.7633950845225764,0.7509813559935368,170.6745053753308,153.46929867259732,6,131 +431.0,0.0,0.0,0.0,0.0,1.048916003525145,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.9134591641028723,4.657354354858398,0.0,1,0,1,0,2,0.08157723,0.02730653,0.03768375,-0.01889189,0.03622347,0.013797992,-1.4535627e-09,-0.08645152,-0.13615477,-0.035635095,0.047616865,-0.01854215,-0.014525261,-0.00046400656,0.06438179,-0.012395554,0.050159052,-1.9936557e-09,1.7346568e-09,-0.18820718,-0.00043165617,-0.058186255,0.16153846153846155,1.0,0.8384615384615385,0.6106870229007634,131,19.0,135.75569910669662,133.8078278337493,0.5956205216706992,0.6000652377286833,286.11400156476,277.51139821339325,3,131 +145.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0006130092650874129,0.0,1.0714743037276624,0.5990606382937735,0.0,0.9223765601093546,0.0,0.8501262814799941,5.085972785949707,2.321824312210083,1,1,1,2,5,0.09335075,-0.03859087,0.038556267,0.009093438,0.05064778,0.0794768,1.5389789e-09,-0.0073856516,-0.032507576,0.050225187,-0.023618845,-0.032613926,0.021749295,0.0007667077,-0.03045267,-0.11015446,0.05859122,-1.0721704e-09,2.5199005e-09,0.045623947,0.0007132825,0.0122792,0.2923076923076923,0.9512195121951219,0.7076923076923077,0.6259541984732825,131,12.47638604,175.88723455791433,162.8443992828383,0.5110308479766478,0.5371147561430665,385.84721026901775,365.77446911582865,7,131 +158.0,0.0,0.0,0.0,0.0,0.9528714824553921,0.0,0.6400350718960001,0.0,0.0,0.0,0.0,0.12757433559149126,0.4972693711827071,0.994932133555412,1.4847173690795898,1.906588077545166,1,1,2,1,5,-0.07692718,0.0115047805,-0.030135646,0.08212307,-0.11322665,-0.17032166,-1.7272333e-08,0.014617458,0.039029367,-0.00364586,-0.05188225,0.09201955,0.0052495743,0.001719626,-0.11704217,-0.056385893,-0.15849867,3.1329e-08,3.0313794e-09,0.0038056115,-0.0045753135,0.055648502,0.2923076923076923,0.8765432098765432,0.7076923076923077,0.6259541984732825,131,12.12867899,129.802065865403,142.8678580605383,0.6093102298776485,0.5796694984182708,293.6768728839951,273.604131730806,7,131 +13.0,0.0,0.0,0.0,0.0,0.6103882948527024,0.0,0.9086842604828722,0.0,0.0,0.2601660186281569,0.0,0.4012243365757805,0.0,0.9872763939698536,2.086411237716675,3.244041681289673,1,1,2,1,5,-0.045973282,0.07683243,0.0004438871,0.068640955,-0.078315735,-0.2079916,3.6726808e-09,0.07116895,0.06298202,-0.047822375,-0.13783848,0.042614907,-0.028362904,-0.00041575998,-0.22653459,-0.093561895,-0.09448251,1.0848057e-08,3.2153649e-09,0.13850026,-0.00034056487,0.15231326,0.375,0.810126582278481,0.625,0.5517241379310345,145,9.618069815,152.3186000104797,165.09296421894896,0.5914154474535226,0.5659293207855794,339.42589311799145,318.6372000209594,7,145 +416.0,0.0,0.0,0.0,0.0,0.9839728689776025,0.0,0.0,0.0,0.0,0.34677546060204895,0.0,0.05102701753456314,0.0,0.9487901228666292,3.950760841369629,2.3789424896240234,1,1,2,0,4,0.05986115,-0.050956238,0.023659261,-0.033619765,-0.024298726,0.051790588,-2.0439658e-10,-0.08557654,-0.09256202,0.06449682,0.085099444,0.010454198,0.029622408,0.0011391744,0.11492296,0.10990493,-0.022809321,-1.0362795e-09,-1.7760433e-09,0.051376317,0.0010621332,-0.15535538,0.2076923076923077,0.9866666666666667,0.7923076923076923,0.5801526717557252,131,20.0,128.1027460053959,128.04945088706774,0.6132750316569112,0.6133997945954415,285.4106987135253,268.2054920107918,6,131 +439.0,0.0,0.0,0.0,0.0,0.7350362839331691,0.0,0.0,0.0,0.0,0.2720367403881606,0.0,0.308582143673869,0.0,0.9922484493255613,5.579233646392822,2.551746129989624,1,1,2,0,4,-0.04596355,0.038094483,-0.019101657,-0.01723206,0.0785832,0.06023271,2.5311264e-10,-0.0009951736,0.013458807,-0.03730046,0.042659353,-0.05942784,-0.022027628,-0.00025840476,0.0573156,-0.029524906,0.11135808,5.101712e-09,6.4356347e-09,0.068779334,-0.00024499657,-0.0672881,0.13846153846153847,1.0,0.8615384615384616,0.6030534351145038,131,20.0,102.12591949932758,115.29353638160727,0.6771966430248918,0.6440031474283308,233.45704570138867,216.25183899865516,6,131 +69.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.6850151666829416,0.0,0.7839771781714311,0.0,0.9123134394486746,3.729124069213867,1.8539317846298218,1,1,1,0,3,0.06659841,-0.11543512,0.021539945,-0.013949957,-0.035897616,0.08984194,1.1043704e-09,-0.07466425,-0.018635819,0.14759745,0.030373514,0.031281672,0.06538242,0.0023647393,0.04218,-0.03698232,-0.06010218,-1.3317789e-09,1.7405893e-09,-0.001497386,0.0022037418,-0.095808305,0.2923076923076923,0.925,0.7076923076923077,0.6106870229007634,131,11.72895277,181.6796025883756,183.6397457840719,0.49985681195392656,0.4961311061626722,387.6968774290291,373.3592051767512,5,131 +82.0,0.0,0.16849278466823767,0.0,0.0,0.18010986925367822,0.0,0.0,0.0,0.0,1.04047518907207,0.0,0.7997182589834149,0.0,0.9907799752553303,4.617425441741943,5.896042346954346,1,2,2,0,5,-0.20349659,-0.10695824,-0.08646517,-0.043855544,0.017810954,0.10000159,-3.0531173e-09,-0.021873439,0.11669802,0.13552536,0.10140577,-0.029819984,0.061390005,0.0023393515,0.120372005,-0.12601988,0.00020095271,5.4130633e-10,8.056612e-10,0.40558264,0.0021778943,-0.23089327,0.26153846153846155,0.9855072463768116,0.7384615384615385,0.5267175572519084,131,14.69130732,220.66150725342158,210.8956920300311,0.43075340734954076,0.4471123429536297,475.39575566003225,455.32301450684315,7,131 +168.0,0.0,0.0,0.0,0.0,0.0,0.0,0.66752872341951,0.0,0.0,0.4648073232891566,0.0,0.9400406417747337,0.0,0.995169345537821,6.082849502563477,2.503037452697754,1,1,1,1,4,-0.051604625,0.018543793,-0.021507235,0.018394442,0.111716785,0.07921381,4.9989574e-10,-0.030684551,-0.025877293,-0.022314701,-0.04550358,-0.077442646,-0.009153363,-0.00023097346,-0.06037269,-0.15271275,0.14414892,7.951218e-10,1.5587055e-09,0.06387388,-0.00021643181,0.070371374,0.2846153846153846,1.0,0.7153846153846154,0.6564885496183206,131,16.64339493,247.5562885126832,255.7560245676481,0.38872958544159625,0.37675203776133587,524.3177837280999,507.1125770253664,6,131 +423.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.1532651334982871,0.0,1.1669273253236925,0.5144517254271235,0.0,0.9908444947625192,0.0,0.9971465186278022,4.351600646972656,1.4142955541610718,1,1,1,2,5,-0.062708795,-0.07645348,-0.026855344,0.006283025,0.013938525,0.083754644,-2.540099e-10,-0.10946657,-0.057307206,0.09887762,-0.015557501,0.011289512,0.042402513,0.0015710864,-0.018354284,-0.1704022,-0.006909624,-4.051425e-11,-1.1258368e-11,-0.04577305,0.0014595751,-0.009803052,0.43846153846153846,0.9384615384615385,0.5615384615384615,0.4961832061068702,131,20.91666667,250.10561006116689,246.4582890603761,0.38496549768260646,0.3903621064319719,534.2839612755229,514.2112201223338,7,131 +45.0,0.0,1.0022913875742367,0.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.4686986703535412,0.0,0.7499535330975128,0.0,0.9811997950077046,0.3956172466278076,0.0,1,2,1,0,4,-0.034264345,0.089458056,-0.013397697,-0.028940465,-0.13288899,-0.25914595,-4.202638e-10,0.10302888,0.09576879,-0.114893496,0.07282634,0.16214462,-0.049996242,-0.0018032845,0.09828024,-0.23241366,-0.21998774,-1.2175477e-09,-3.1558525e-10,-0.18820675,-0.001676888,-0.06886827,0.23846153846153847,0.56,0.7615384615384615,0.19083969465648856,131,9.752224504,111.71237487913756,108.2764268212932,0.6528661744953745,0.6614844488243109,247.76242201055302,233.4247497582751,5,131 +331.0,0.0,0.0,0.0,0.0,0.7513742184313192,0.0,0.0,0.0,0.0,0.5923200273095163,0.0,0.3390142497308943,0.0,0.9958721154928197,1.4873809814453125,0.0,1,1,2,0,4,-0.09002123,-0.04105476,-0.037240595,-0.025770454,-0.12538858,-0.08222849,-2.3364768e-10,0.015404053,0.076940045,0.053079247,0.064612344,0.122183055,0.02286448,0.00084653165,0.087123044,-0.0960075,-0.18716608,2.5410523e-11,3.846573e-10,-0.18820713,0.0007862944,-0.116752416,0.5923076923076923,0.5789473684210527,0.4076923076923077,0.44274809160305345,131,25.0,200.96013983439084,209.67561236107937,0.4643933102157154,0.44919930792700347,426.2579519210596,411.9202796687817,5,131 +131.0,0.0,0.0,0.0,0.0,0.6661745991292611,0.0,0.0,0.0,0.0,0.2416884876027653,0.0,0.3467321812028892,0.0,0.9854865666230518,2.06158447265625,0.0,1,1,2,0,4,-0.026236577,0.00056513713,-0.01032935,-0.031580374,-0.089169376,-0.091455884,2.8259312e-10,0.029330738,0.046980496,-0.0051929518,0.07930627,0.09368202,-0.0001518434,1.6823748e-05,0.10712606,-0.074133255,-0.13454606,8.849163e-10,-2.6083388e-10,-0.18820721,1.688201e-05,-0.10824585,0.4307692307692308,0.7857142857142857,0.5692307692307692,0.5343511450381679,131,15.20876112,168.58011287436017,193.14032178519415,0.5254839952705497,0.47846280638801825,361.49789800099825,347.16022574872034,5,131 +456.0,0.0,0.0,0.0,0.0,0.9423030257083412,0.0,0.0,0.0,0.5962865509263652,0.49387990097736423,0.0,0.1824695930603978,0.0,0.9075857196251548,5.9885358810424805,3.997877597808838,1,1,2,1,5,0.015766544,-0.002836667,0.09587931,-0.0069756745,0.09121769,0.104722075,4.786507e-09,0.060090907,-0.06710191,0.015904743,0.007576151,-0.074105345,0.0024152994,0.00021471035,-0.013319223,0.028422121,0.1302344,-1.2351702e-08,-8.552228e-09,0.2144189,0.00019840316,-0.06421199,0.13846153846153847,1.0,0.8615384615384616,0.5877862595419847,131,21.16666667,88.19786887386648,95.56084129120234,0.714170830180112,0.6943799183627837,210.46847890092204,190.39573774773297,7,131 +337.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.9526017954118274,0.0,0.8456254795112186,0.0,0.9920601342121753,3.4139182567596436,3.448237657546997,1,1,1,0,3,-0.118384555,-0.10966137,-0.058093376,-0.034339324,-0.043290578,0.05886301,-3.20016e-09,-0.050111134,0.06825904,0.14016983,0.0796669,0.03630971,0.062052082,0.0023084763,0.1012137,-0.11296862,-0.08113722,-3.5800856e-09,-4.7384957e-10,0.15906478,0.0021519507,-0.17998323,0.3046875,0.9538461538461539,0.6953125,0.5116279069767442,129,29.0,176.0160891783583,189.49654563128993,0.5054870273832353,0.479753554523773,376.2923296763147,362.0321783567166,5,129 +129.0,0.0,0.21929810244060352,0.0,0.0,0.0,0.27232918319187993,0.0,0.0,0.34066811481623077,0.7667408509237319,0.0,0.9820617408747784,0.0,0.7150463293185749,5.035369873046875,2.029691219329834,2,2,1,1,6,-0.061975915,0.01046723,-0.021240901,-0.028217379,0.054439154,0.055128742,9.541089e-09,0.10034461,0.119974345,-0.0060804635,0.058702365,-0.03388818,-0.0044656284,0.00013384677,0.08265674,-0.14005068,0.06232668,6.6394814e-09,5.993987e-09,0.016203294,0.00012342798,-0.095632404,0.4230769230769231,0.918918918918919,0.5769230769230769,0.5648854961832062,131,12.62970568,262.1507996689022,256.60112465081045,0.36766776126394796,0.3755387544410471,563.241874941449,540.3015993378044,8,131 +146.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.6918298726695834,0.0,0.9955663519934761,0.0,0.970005896488825,2.9284486770629883,0.5666346549987793,1,1,1,0,3,-0.005098953,-0.009795599,0.0005764648,-0.018418085,-0.04201179,-0.04549953,-1.7434996e-09,0.06407888,0.087428465,0.0074384487,0.045155507,0.056822248,0.0068145585,0.00018829921,0.067424305,-0.1703936,-0.082328826,5.3349045e-09,-1.2442497e-09,-0.13114078,0.00017552181,-0.062496703,0.46153846153846156,0.8307692307692308,0.5384615384615384,0.4961832061068702,131,12.27378508,203.14227161646096,192.96968265745005,0.46054155810637465,0.4787745280254504,430.62221548519983,416.2845432329219,5,131 +469.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.8780349170075112,0.0,0.9674805794159571,3.278374671936035,0.0,1,0,1,0,2,0.04851754,0.031726774,0.021332491,-0.033371553,-0.015449647,-0.06594656,-1.8131965e-10,-0.06212703,-0.10240371,-0.036875732,0.08420511,0.03675646,-0.02192817,-0.0007703415,0.11363445,-0.14765832,-0.04579989,1.50413e-10,5.99861e-10,-0.18820773,-0.0007022809,-0.101341836,0.23076923076923078,0.9444444444444444,0.7692307692307693,0.5572519083969466,131,19.0,154.2591862145045,151.8661626313364,0.5550064631974555,0.5600989345015069,323.1209757803757,314.518372429009,3,131 +49.0,0.0,0.0,0.0,0.0,0.7116007063457768,0.0,0.5139230824757779,0.0,0.0,0.2520659590594743,0.0,0.3517466276241588,0.0,0.9651450715462362,2.1086935997009277,4.974644660949707,1,1,2,1,5,0.0044891634,0.0067861606,0.060826335,0.052583247,-0.08469098,-0.14574505,-1.4598462e-09,-0.0073743896,-0.053173073,0.011089115,-0.05934363,0.04748034,0.011646829,0.00034941046,-0.16642572,-0.07073722,-0.1211836,3.357393e-09,-6.918492e-10,0.3127889,0.00035339265,-0.037018478,0.1076923076923077,0.987012987012987,0.8923076923076924,0.5954198473282443,131,11.78097194,65.66574215885939,85.1548725438735,0.7783082666460747,0.7225139165676678,165.40422547090785,145.33148431771878,7,131 +115.0,0.0,0.0,0.0,0.0,0.521350307627822,0.0,0.0,0.0,0.0,0.45256373251361576,0.0,0.541196855588325,0.0,0.9837841669718418,4.1454691886901855,1.3735883235931396,1,1,2,0,4,-0.009473662,-0.009586029,0.0016481611,-0.021786805,0.0070648612,0.020931423,-4.0484166e-10,2.0576725e-05,0.012731496,0.009661597,0.05462253,0.0016766278,0.0068757115,0.00037681792,0.07493029,-0.09484695,-0.000669202,-3.1935736e-09,-2.0590596e-09,-0.04987267,0.0003524835,-0.08839174,0.3333333333333333,0.9701492537313433,0.6666666666666666,0.5153846153846153,130,8.813141684,179.44825298418655,180.21294765702987,0.5014829910029309,0.5000102295057104,388.05538039454314,370.8965059683731,6,130 +55.0,0.0,0.0,0.31992158326068504,0.0,1.063060810677081,0.0,0.49754642275577066,0.0,0.0,0.4012299358446064,0.0,0.0,0.0,0.9943851323922476,2.9892683029174805,1.0277373790740967,1,1,1,2,5,-0.07793665,0.0048070513,-0.032051276,0.02987578,-0.06324589,-0.048344493,-7.3126555e-10,0.022244984,0.049679548,-0.021356134,-0.051018037,0.043755606,-0.0016543174,9.810878e-05,-0.06526796,0.13960059,-0.0642715,1.3828847e-08,6.8578174e-09,-0.08470323,8.0206555e-05,0.09824045,0.33076923076923076,0.9135802469135802,0.6692307692307692,0.6259541984732825,131,13.28678987,165.41509674280684,160.8119136200739,0.5318704517303194,0.5412976698880073,364.9029346388028,344.8301934856137,7,131 +193.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.3534484492083926,1.0783450467929394,0.0,0.9980468325642848,0.0,0.9961162990331645,3.503162384033203,4.672151565551758,1,1,1,1,4,-0.19629575,-0.08877467,-0.081441484,-0.022371605,-0.028075386,0.018198932,-2.456058e-09,-0.0063882833,0.09910505,0.11131277,0.0464177,0.015167694,0.055110414,0.0017321248,0.011919632,-0.18476306,-0.06432324,1.2771301e-09,2.6411757e-09,0.28232488,0.0016229145,-0.18342389,0.2923076923076923,0.9420289855072463,0.7076923076923077,0.5267175572519084,131,14.55715264,227.25480427273055,234.90084328252442,0.42004864661734526,0.4079673614876014,483.7148152481946,466.5096085454611,6,131 +444.0,0.0,0.0,0.0,0.0,0.9854247155055375,0.0,0.0,0.0,0.0,0.3003371470548634,0.0,0.0,0.0,0.9971964063247043,3.442889928817749,0.0,1,1,1,0,3,-0.09349692,-0.01368471,-0.039308794,-0.034681376,-0.038972832,0.00014959564,3.748698e-09,-0.052903417,-0.007144022,0.012097094,0.08734505,0.043486614,0.008263926,0.00034852006,0.118054554,0.08239297,-0.04175415,-6.529336e-10,-8.5464434e-11,-0.18820724,0.00032556438,-0.12320412,0.4076923076923077,0.9142857142857143,0.5923076923076923,0.5419847328244275,131,20.08333333,217.3513232870303,221.53676626434782,0.43623019560689374,0.42931679762276154,454.17278437588294,442.7026465740606,4,131 +308.0,0.0,0.0,0.0,0.0,0.9963928052694417,0.0,-0.10927211659650925,0.0,1.1232746707411547,0.4513887073782376,0.0,0.0,0.0,0.8259812481204666,2.722058057785034,1.0685033798217773,1,1,1,2,5,0.11129141,-0.054840755,0.028705968,0.006900578,-0.088878624,-0.0041933767,1.2590465e-09,-0.035823606,-0.0338916,0.06511165,-0.016158031,0.06220008,0.03369086,0.001311329,-0.019883752,0.15940611,-0.10390235,2.5695182e-10,4.391312e-10,-0.0805977,0.0012241969,0.01282352,0.35384615384615387,0.9104477611940298,0.6461538461538462,0.5190839694656488,131,27.0,144.0367543887424,142.5584383718455,0.5770891002582805,0.5803544873855327,322.1462499306739,302.0735087774848,7,131 +210.0,0.0,0.0,0.0,0.0,0.6960914195321947,0.0,0.40109297354397266,0.0,0.0,0.23299831316423264,0.0,0.349972505297064,0.0,0.9922670644521712,5.409605503082275,2.67958927154541,1,1,2,1,5,-0.018555358,0.015398404,-0.009498526,0.017737424,0.072329305,0.05559624,-1.2093268e-10,-0.085848294,-0.09997086,-0.018986825,-0.040950067,-0.05328766,-0.0076693823,-0.0001850042,-0.058316458,-0.06088629,0.096132405,-5.0035035e-11,1.1384524e-09,0.08165439,-0.00017375773,0.04991488,0.17692307692307693,1.0,0.823076923076923,0.6259541984732825,131,17.39356605,151.3800368998331,144.8321451431023,0.5611391301465339,0.5753398052344487,336.8328149528553,316.7600737996662,7,131 +190.0,0.0,0.0,0.0,0.0,0.7618837998764344,0.0,0.26443766644551564,0.0,0.0,0.4458934877030427,0.0,0.3286427867292932,0.0,0.9971585865815473,4.47548770904541,3.0222370624542236,1,1,2,1,5,-0.07542242,-0.042887,-0.031819906,-0.0010409099,0.016785074,0.059212964,-7.392476e-10,-0.08771642,-0.04299975,0.05403068,-0.0010613365,-0.010481323,0.02745303,0.0011300036,-0.010422293,-0.07857434,0.013283444,5.128942e-10,-1.2068548e-09,0.11616236,0.001054078,-0.04062741,0.17692307692307693,0.9883720930232558,0.823076923076923,0.6641221374045801,131,16.85147159,131.89917447934297,137.19341031444105,0.6044526364187054,0.5923610367180012,297.87109011187505,277.79834895868595,7,131 +70.0,0.0,0.6823355932747447,0.0,0.0,0.7496816583125988,0.0,0.0,0.0,0.0,0.40377143616580913,0.0,0.20186766228976322,0.0,0.9620587520798046,2.8942103385925293,1.6090919971466064,1,2,2,0,5,-0.1553806,-0.020551944,-0.062062252,-0.038554005,-0.054639924,-0.05130679,1.2406638e-09,0.105153546,0.19791074,0.026840847,0.09171003,0.048699494,0.011702741,0.0003297736,0.122611,-0.067021534,-0.0797237,-9.389748e-10,6.4712247e-10,-0.026155155,0.00030641293,-0.1427473,0.43846153846153846,0.8356164383561644,0.5615384615384615,0.5648854961832062,131,14.65845311,172.6938620495776,175.86480478839493,0.5172976327996692,0.5110745991018167,379.4604652523443,359.3877240991552,7,131 +128.0,0.0,0.0,0.0,0.0,0.0,0.0,0.4746798673772368,0.0,0.0,0.4918951998187546,0.0,0.932366949059068,0.0,0.8390939329067862,4.427084922790527,1.4636821746826172,1,1,1,1,4,0.092865564,0.008034101,0.04257142,0.0005157715,0.025146974,0.02342267,-9.3289765e-11,0.035815354,-0.012071235,-0.010613034,-0.012995031,-0.010092086,-0.004004295,0.0002312922,0.00586737,-0.1181743,0.02189331,9.503908e-11,-4.8913367e-09,-0.040799346,0.00022330285,0.028383203,0.2076923076923077,0.975,0.7923076923076923,0.6183206106870229,131,14.39835729,118.99206287782454,114.52187109366466,0.6349759346967228,0.6459027177744013,267.1893324583826,249.98412575564907,6,131 +194.0,0.0,0.0,0.0,0.0,1.2460670897877992,0.0,-0.00337341770826961,0.0,1.0250561562834695,0.775248465829071,0.0,-0.11976582373593125,0.0,0.5535483562946317,8.030536651611328,5.828146934509277,1,1,2,2,6,0.11507085,-0.02398058,0.055349555,0.007810146,0.16973445,0.203927,2.099207e-09,0.06924442,-0.0019158869,0.035834182,-0.020633662,-0.15270557,0.0135481525,0.00051026704,-0.07271145,0.22843735,0.283703,1.5215066e-09,-3.6974919e-09,0.3987449,0.00047129302,-0.056950595,0.26153846153846155,0.9166666666666666,0.7384615384615385,0.648854961832061,131,14.22313484,178.33581355184316,179.26089025370783,0.5062771440658098,0.5044927191040568,395.61190270733096,372.6716271036863,8,131 +410.0,0.0,0.0,0.0,0.0,0.8154781772951787,0.0,-0.22889439353913588,0.0,0.9821531318148833,0.6865261804100662,0.0,0.0,0.0,0.5472726541260876,3.194938898086548,1.0035357475280762,1,1,1,2,5,0.109075665,-0.03149739,0.05000987,-0.007054833,-0.06900065,-0.013019549,2.0000739e-09,0.08049145,0.06242599,0.035695422,0.019451084,0.034720015,0.020056125,0.00061293325,0.020169603,0.31311724,-0.055338055,2.8187275e-09,-1.2701541e-09,-0.08714058,0.0005684628,-0.031514246,0.3076923076923077,0.8333333333333334,0.6923076923076923,0.5572519083969466,131,23.91666667,134.1870015926794,120.08864177045342,0.5991974345683179,0.6323238504098965,302.4467443385479,282.3740031853588,7,131 +458.0,0.0,0.0,0.0,0.0,0.9216083363447634,0.0,0.07305706754352571,0.0,1.0467174213339316,0.0,0.0,0.08775018779222021,0.0,0.9962446568409602,5.50546932220459,5.295236110687256,1,0,2,2,5,-0.0668088,0.045573793,-0.02851985,0.014622072,0.080315694,0.033709344,-3.2227447e-09,-0.07408007,-0.08340982,-0.044622656,-0.033559717,-0.05778511,-0.025946422,-0.00055790716,-0.06662434,-0.047671728,0.1157136,-3.903641e-09,-2.6454634e-09,0.34507558,-0.0005236298,0.028317017,0.1,1.0,0.9,0.6106870229007634,131,19.41666667,112.36706738073335,107.82017329239389,0.6512368118956872,0.6626373784115166,258.8068759146558,238.7341347614667,7,131 +19.0,0.0,0.0,0.0,0.0,0.7983733350887422,0.0,0.5090471482399641,0.0,0.0,-0.007329264329091579,0.0,0.26834469086280927,0.43707524213665666,0.9676282064119969,3.793236255645752,3.5316219329833984,1,2,2,1,6,0.0036905722,0.043330226,0.033725057,0.046794064,0.004049914,-0.03802869,1.3269529e-09,0.007661954,-0.068253964,-0.020999659,-0.057658754,0.005299923,-0.008116185,0.0010883762,-0.10712883,-0.05287647,-0.014282801,-3.7029286e-09,1.4142634e-08,0.16746238,0.0008671314,0.027929367,0.18064516129032257,0.9883720930232558,0.8193548387096774,0.5576923076923077,156,12.63791923,109.25816615775588,124.5481240398154,0.7045567269685745,0.6708614103766152,258.8637332508657,234.51633231551176,8,156 +163.0,0.0,0.0,0.0,0.0,0.9978320001487473,0.0,0.41715905187783586,0.0,0.0,0.4826773275250574,0.0,0.1074138795614642,0.0,0.8913364969690636,2.8254165649414062,1.1239163875579834,1,1,2,1,5,0.06299817,-0.02544772,0.02727675,0.0041399775,-0.0696961,-0.029001843,5.9203237e-10,0.025360474,0.018436592,0.021558736,-0.0052126558,0.056768157,0.019507868,0.0006497819,0.00014328302,0.05072604,-0.08923036,1.9196815e-09,-2.1383875e-09,-0.07501708,0.00060917967,0.010437651,0.3,0.9,0.7,0.6183206106870229,131,13.11156742,137.41583993028507,135.24911781130697,0.5918583545644569,0.5967732777916192,308.90442101375925,288.83167986057015,7,131 +365.0,0.0,0.0,0.0,0.0,1.1134998292543217,0.0,-0.11624007976237066,0.0,0.673520908985131,0.7929936551728772,0.0,0.0,0.0,0.8807311906417206,5.281371593475342,2.7453458309173584,1,1,1,2,5,0.0572012,-0.10939854,0.01772626,-0.008107421,0.035512786,0.15344103,-2.5404667e-09,-0.032144755,-0.004737683,0.1408529,0.016331863,-0.031224467,0.061897643,0.0022868682,0.013818518,0.02121162,0.054526333,2.9661469e-09,1.892548e-09,0.088276714,0.0021291387,-0.089956164,0.4230769230769231,0.8787878787878788,0.5769230769230769,0.5114503816793893,131,26.50279527,217.4110493737308,224.30582423310722,0.4361307629618175,0.42480327476525576,468.8948399006507,448.8220987474616,7,131 +195.0,0.0,0.0,0.0,0.0,0.9489247961879033,0.0,-0.18139081155278536,0.0,1.1138718124956353,0.5151103033768292,0.0,0.1774310627335336,0.0,0.9116183463732392,4.656590461730957,2.4034268856048584,1,1,2,2,6,0.054716367,-0.026007805,0.036489893,0.0017977891,0.022657176,0.055098094,-1.2535022e-09,0.004184114,-0.022123745,0.033464655,-0.0059005343,-0.020230673,0.015943995,0.00061906845,-0.012783481,-0.0020986223,0.033821072,7.682157e-09,-1.6061269e-09,0.05384214,0.00057660934,-0.0126273045,0.3,0.971830985915493,0.7,0.549618320610687,131,15.82477755,172.16944327850774,181.07473551515054,0.5183340918359098,0.5010121409717682,383.2791621606601,360.3388865570155,8,131 +453.0,0.0,0.0,0.0,0.0,0.971710135969475,0.0,0.0,0.0,0.6684845829704082,0.53409204524895,0.0,0.0,0.0,0.9926586025953285,1.0230159759521484,1.4273722171783447,1,1,1,1,4,-0.043881733,-0.09352863,-0.016384138,0.00931065,-0.18809263,-0.07154739,-2.1199391e-09,-0.07601208,0.025721084,0.10705886,0.001164059,0.1390241,0.056010555,-0.0059402613,-0.0074762823,0.19491582,-0.21293065,-4.438928e-10,-4.838036e-09,-0.044456113,-0.00574523,-0.04651329,0.43846153846153846,0.7333333333333333,0.5615384615384615,0.4580152671755725,131,18.0,178.26332967080086,186.0246019429573,0.5064172280695004,0.4916355619698127,385.7318660443352,368.5266593416017,6,131 +83.0,0.0,0.0,0.0,0.0,1.0618623774772582,0.0,0.07151767316669105,0.0,1.074721610062412,0.12994452788368796,0.0,0.0,0.6292537767735905,0.9966788806517914,4.081972122192383,0.0,1,2,1,2,6,-0.11509278,0.017970126,-0.0474802,0.011157727,-0.0062259794,0.00827225,3.2179442e-10,0.028609406,0.08448741,-0.026247011,-0.02636417,-0.00029836543,-0.0081318375,-0.00015754832,-0.032709602,0.1038546,0.0050659515,9.546013e-10,1.988947e-09,-0.18820849,-0.00015217888,0.055735577,0.4846153846153846,0.890625,0.5153846153846153,0.4961832061068702,131,12.38603696,279.3048158878138,278.9328768317547,0.34436645391442444,0.34485566876685453,592.6823729288167,572.6096317756276,7,131 +24.0,0.0,0.3471030839597722,0.0,0.0,0.7849750816034038,0.0,0.0,0.0,0.7271614416531741,0.8089775486626724,0.0,0.0,0.0,0.3337149190778532,1.2037718296051025,2.124103546142578,1,2,1,1,5,0.07087851,-0.1261728,0.0127574885,-0.0105965035,-0.18987261,-0.015782315,3.863192e-09,0.057969455,0.14852564,0.15893577,0.022958662,0.11666455,0.0722465,0.0025104457,-0.017058184,0.39531744,-0.22872248,2.3858264e-09,5.0588356e-09,0.025711542,0.0023376157,-0.11697373,0.43846153846153846,0.6851851851851852,0.5615384615384615,0.4198473282442748,131,10.50787132,182.74153100238482,188.36917971876903,0.4978349116880398,0.4872556549539949,399.55580315795874,379.48306200476964,7,131 +364.0,0.0,0.29333920149508064,0.0,0.0,0.0,0.4208942781302382,0.0,0.0,0.0,0.67301090038456,0.0,0.8009516160330774,0.0,0.4656574906990728,3.0967814922332764,2.0836286544799805,2,2,1,0,5,0.05215922,-0.08634741,0.02253192,-0.038558304,-0.06790517,0.03071481,1.331745e-09,0.015291179,0.06605602,0.10950808,0.09597786,0.047614977,0.048936028,0.0017435156,0.12909947,0.042233575,-0.08987479,-2.8328315e-09,-1.5063301e-09,0.021635335,0.001624469,-0.18577859,0.27692307692307694,0.9242424242424242,0.7230769230769231,0.5114503816793893,131,26.51424772,160.68190647390836,176.00595282538615,0.5415663341169337,0.5107993405194855,355.4365541010058,335.3638129478167,7,131 +17.0,0.0,0.0,0.0,0.0,0.0,0.602176980425417,-0.11488045444290462,0.0,0.8989495189465019,0.8054862128053619,0.0,0.9793105133514239,0.0,0.32448189690477197,4.598742485046387,1.240229845046997,2,1,1,2,6,0.07649945,-0.11963331,0.029931318,-0.0011537727,0.01299237,0.12718825,4.8551096e-10,-0.04732825,0.0024213574,0.15420479,0.0025490297,0.0021807018,0.06669708,0.002441857,0.004981872,-0.13982612,0.00022226952,-2.3215063e-10,4.5824526e-09,-0.06330317,0.0022752904,-0.052303195,0.4935064935064935,0.8,0.5064935064935064,0.4838709677419355,155,8.657084189,294.6543367473164,284.1261644532786,0.38654852830661834,0.3999018990352125,629.6042943139419,605.3086734946328,8,155 +209.0,0.0,0.0,0.0,0.0,0.7763190087115883,0.0,0.0,0.0,0.0,0.3339196254178432,0.0,0.3070171942145431,0.0,0.9794710522890092,5.768069267272949,4.208829879760742,1,1,2,0,4,0.01979927,-0.014041607,0.0068096546,-0.0004378901,0.08257928,0.09216633,-5.0838476e-11,-0.072490536,-0.08520033,0.016656026,-0.0028323857,-0.059752263,0.00966278,0.00042691405,-0.014201107,-0.045041535,0.11770866,7.1621475e-10,6.610177e-10,0.23566385,0.0003969361,-0.022696817,0.1076923076923077,1.0,0.8923076923076924,0.6183206106870229,131,14.29158111,107.80474588603445,107.4173315457567,0.6626763977897099,0.6636570094086264,244.8146984748024,227.6094917720689,6,131 +323.0,0.0,0.4247826025943592,0.0,0.0,0.0,0.3116554565443062,0.0,0.0,0.0,0.5497003479597622,0.0,0.971417532882576,0.0,0.6470457339752673,8.669367790222168,3.162992000579834,2,2,1,0,5,-0.064177155,0.105693236,0.004451293,-0.03509786,0.23999085,0.17187753,2.8712202e-10,0.19799006,0.14971827,-0.098235816,0.084138,-0.182592,-0.08627467,-0.001132764,0.11119422,-0.116302215,0.3364464,-2.536654e-09,-1.4729011e-09,0.13033777,-0.0008999037,-0.12720391,0.38461538461538464,1.0,0.6153846153846154,0.5572519083969466,131,25.0,385.92297319505195,356.22711208018364,0.22923939067842355,0.2567517880693441,805.918687543293,785.8459463901039,7,131 +467.0,0.0,0.0,0.0,0.0,1.0422341224876037,0.0,0.41903273242373085,0.0,0.0,0.4466882816525208,0.0,0.0,0.0,0.9966662528117496,5.804379463195801,2.5736796855926514,1,1,1,1,4,-0.06163074,-0.07528944,-0.026816403,0.012077389,0.060403638,0.15517192,-3.3608066e-10,-0.12781793,-0.0788593,0.09787106,-0.023301482,-0.05654971,0.041166205,0.0015018407,-0.04016682,0.1557925,0.10208143,1.574068e-09,-1.2638061e-09,0.07098826,0.0013979373,-0.019030299,0.4230769230769231,0.9848484848484849,0.5769230769230769,0.5038167938931297,131,18.75,286.6340170532611,292.7154510188055,0.33486662329546235,0.3271833552293919,602.4732408092557,585.2680341065222,6,131 +185.0,0.0,0.0,0.0,0.0,1.0742370420684302,0.0,0.7564462110903539,0.0,0.0,0.0,0.0,0.0,0.40638898959338426,0.9968867506583523,4.3354668617248535,0.0,1,1,1,1,4,-0.111956865,0.074679695,-0.046151746,0.034280688,0.016133167,-0.022443505,-8.703505e-10,0.049241368,0.063370764,-0.096756816,-0.075654946,-0.0131948525,-0.049734373,-0.0013871838,-0.066276304,0.1026171,0.039626583,3.7306158e-10,-4.569702e-09,-0.18820645,-0.0013007069,0.1727539,0.27692307692307694,0.9647058823529412,0.7230769230769231,0.6564885496183206,131,14.40109514,182.01234040466665,204.34215856888517,0.4992224009025779,0.4584372284722069,388.3623530616112,374.0246808093333,5,131 +85.0,0.0,0.0,0.0,0.0,1.0344760398986426,0.0,0.0,0.0,0.0,0.4217487716654869,0.0,-0.004256336180526748,0.0,0.8468934943278629,2.639660120010376,3.2146129608154297,1,1,2,0,4,0.099620886,-0.05639376,0.029846044,-0.007479645,-0.08950419,-0.033575766,-2.8014857e-09,-0.018819282,-0.039378922,0.06541287,0.017573806,0.050415482,0.04167465,0.001295037,0.021833366,0.12565759,-0.10415043,5.148767e-09,2.8511982e-09,0.1355365,0.0012021197,-0.07482636,0.13846153846153847,0.9733333333333334,0.8615384615384616,0.5801526717557252,131,10.80903491,87.69705102340592,92.01041501480934,0.7155372865308256,0.7038536766230793,204.59930874954534,187.39410204681184,6,131 +38.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.12245696972755737,0.0,1.0953326146832854,0.5598477990332253,0.0,0.8748794358844564,0.0,0.799529897868633,4.472221374511719,1.7857375144958496,1,1,1,2,5,0.09051114,-0.00035462054,0.04961146,0.0020495628,0.022930056,0.03429317,4.6797e-10,0.04370686,0.0144364685,-0.0025923848,-0.009454625,-0.011409811,0.0020769178,0.0002809014,0.00065885513,-0.08846106,0.02296931,2.0631261e-09,-9.343581e-10,-0.008365225,0.00026329557,0.008869884,0.2923076923076923,0.9583333333333334,0.7076923076923077,0.5572519083969466,131,13.13894593,152.0939469863395,140.336540598468,0.5596121927823225,0.5852971270887906,338.2606351258681,318.187893972679,7,131 +28.0,0.0,0.0,0.0,0.0,1.0147524478492962,0.0,0.6239791130598008,0.0,0.0,0.0,0.0,0.0,0.532478847081352,0.9887842448552443,0.4256429672241211,1.4073792695999146,1,1,1,1,4,-0.050170664,0.0007041857,-0.020793224,0.029013662,-0.1847025,-0.17726836,-1.1264105e-09,0.043344785,0.059656713,-0.0077822115,-0.05409557,0.13574529,0.0017823053,-2.7805369e-05,-0.086066924,0.15079978,-0.24277298,9.817069e-10,1.2107252e-09,-0.04646959,-2.7843302e-05,0.087129705,0.5116279069767442,0.6290322580645161,0.4883720930232558,0.47692307692307695,130,11.04722793,184.09109733260533,183.3601325311412,0.49260744385662214,0.4939943105499369,397.3410690913807,380.18219466521066,6,130 +120.0,0.0,0.0,0.0,0.0,0.9245854350825455,0.0,0.0,0.0,0.0,0.3860329119955815,0.0,0.0,0.0,0.9503364243110013,2.2609500885009766,1.3103801012039185,1,1,1,0,3,0.02076482,-0.026044173,0.009500325,-0.03038499,-0.106627546,-0.053687487,-2.7204458e-10,0.011894998,0.022847477,0.03300352,0.07600511,0.07295275,0.014875974,0.0005580313,0.10238912,0.18186098,-0.12606819,-1.361684e-09,-5.8139876e-10,-0.056238357,0.00051827054,-0.12612906,0.27692307692307694,0.9411764705882353,0.7230769230769231,0.5267175572519084,131,8.481861739,149.82361049254675,147.52916265027753,0.5644825311504548,0.5694476591095516,323.9848932373714,309.6472209850935,5,131 +422.0,0.0,0.0,0.0,0.0,0.9723209931762046,0.0,0.0,0.0,0.7074965521335341,0.49481735383487463,0.0,0.1125761729658043,0.0,0.9702522977193196,5.248749732971191,2.178950309753418,1,1,2,1,5,-0.015082262,0.03158036,-0.004505246,-0.007781771,0.054792013,0.06117134,4.84227e-09,0.06651058,0.059066176,-0.027045108,0.017059261,-0.043426275,-0.022174211,-5.4465312e-05,0.019723827,0.018937012,0.08535271,6.5752435e-09,-6.582968e-09,0.031235158,-3.8715614e-05,-0.027750015,0.19230769230769232,0.9868421052631579,0.8076923076923077,0.5877862595419847,131,20.0,133.51506504504556,115.2491499409443,0.6007361345260903,0.644112259752665,301.1028712432802,281.0301300900911,7,131 +30.0,0.0,0.0,0.0,0.0,1.1032437910910116,0.0,0.0,0.0,0.0,0.5849733514131912,0.0,-0.027933738003981575,0.0,0.8866283979018523,5.620967864990234,3.5834856033325195,1,1,2,0,4,0.044314466,0.007918573,0.022255234,-0.015672984,0.06265392,0.07435461,9.2350744e-10,0.06801278,0.049181607,-0.005994051,0.03701552,-0.064191625,-0.0026924694,3.794658e-05,0.047422152,0.1740291,0.117253765,-1.7860274e-09,2.562677e-10,0.17268556,3.2279615e-05,-0.065168075,0.12307692307692308,1.0,0.8769230769230769,0.6183206106870229,131,14.7652293,68.88010487575265,102.20298534036256,0.7688178807108877,0.6769974786963372,166.96541645423878,149.7602097515053,6,131 +126.0,0.0,0.0,0.0,0.0,0.0,0.1098297853662449,0.14727929545846472,0.0,1.0091817363435889,0.24727744525960724,0.0,0.9192484939098367,0.49061028085621855,0.8071932305931898,2.9831132888793945,0.0,2,2,1,2,7,0.041806336,0.012295233,0.018409286,0.018216042,-0.038448215,-0.062484164,-1.6812042e-10,0.07554903,0.057802714,-0.01668192,-0.04386763,0.04359286,-0.0067951265,-0.00029625068,-0.047927946,-0.13797733,-0.07307277,-1.459811e-10,-2.4488824e-09,-0.1882065,-0.0002783651,0.0854255,0.4846153846153846,0.7794117647058824,0.5153846153846153,0.5267175572519084,131,10.35181383,203.60794363142708,190.4203066469949,0.4597237304757988,0.48345595542248304,446.1561628664988,423.21588726285415,8,131 +413.0,0.0,0.0,0.0,0.0,1.0512968795776596,0.0,0.33151620078489674,0.0,0.0,0.6103184229155447,0.0,0.05816338117974833,0.0,0.9933762931823722,4.068296909332275,2.246701955795288,1,1,2,1,5,-0.04569731,-0.10099772,-0.019839028,-0.0013513883,-0.023186428,0.09152399,-4.947032e-10,-0.0895495,-0.02102483,0.12646638,0.0024259924,0.0152529795,0.05887813,0.00220764,0.0010792823,0.017697347,-0.027170269,-1.9493909e-09,1.6217793e-09,0.038058396,0.002055866,-0.05597056,0.36923076923076925,0.918918918918919,0.6307692307692307,0.5648854961832062,131,18.0,218.16471053512413,232.78803370913565,0.4348780052763218,0.41127057594764177,470.40216222343736,450.32942107024826,7,131 +104.0,0.0,0.0,0.0,0.0,1.0466930634386433,0.0,0.6616764316528713,0.0,0.0,0.4024338496219753,0.0,0.0354356117376507,0.0,0.7118883271515367,3.176772117614746,2.1092283725738525,1,1,2,1,5,0.13969147,-0.029595306,0.056598578,0.02394804,-0.056529127,-0.008681352,2.829725e-11,-0.01751123,-0.06795723,0.0353037,-0.045087125,0.035797264,0.01817086,0.0007392367,-0.06547215,0.112084694,-0.06813354,-2.4930003e-09,1.5688042e-09,0.024213465,0.0006910395,0.053090993,0.23846153846153847,0.8902439024390244,0.7615384615384615,0.6259541984732825,131,13.94934976,130.00125422325533,127.02661799918192,0.6088471711741487,0.615799152442733,294.07524959969976,274.00250844651066,7,131 +81.0,0.0,0.0,0.0,0.0,0.8410998566262913,0.0,0.0,0.0,0.0,0.39428983768292475,0.0,0.25017547954545954,0.0,0.9976042197148002,3.687361478805542,2.613356113433838,1,1,2,0,4,-0.109582245,-0.0059174513,-0.045372516,-0.011856307,-0.016455337,-0.012997565,-2.4059e-10,-0.003957224,0.041357663,0.007175326,0.029403154,0.012982896,0.0036890302,0.00016689219,0.039389025,-0.024809668,-0.02750083,-7.61228e-10,-2.8616488e-11,0.074984044,0.00015487694,-0.04763978,0.16923076923076924,0.9864864864864865,0.8307692307692308,0.5648854961832062,131,14.64476386,111.91379151153463,112.0025590865624,0.6523644661991864,0.6521434776387451,253.03278972580273,235.82758302306925,6,131 +451.0,0.0,0.0,0.0,0.0,0.8353645478149423,0.0,0.0,0.0,0.0,0.30150015393029084,0.0,0.24671192401799966,0.0,0.972450293302535,3.8105177879333496,2.192298173904419,1,1,2,0,4,0.029791282,-0.030264981,0.011757635,-0.021229947,-0.019673793,0.021599278,-9.0314584e-10,-0.064733826,-0.06893063,0.03792688,0.05321485,0.013150517,0.017730333,0.00070817047,0.07173547,0.021536207,-0.027464798,1.2435629e-09,-1.383343e-10,0.03257941,0.00066015054,-0.09648426,0.16923076923076924,1.0,0.8307692307692308,0.5877862595419847,131,22.58333333,120.39671306212806,121.19931243184095,0.6315807727668563,0.6296489761829458,269.9986328269896,252.79342612425611,6,131 +343.0,0.0,0.0,0.0,0.0,0.8844615088373762,0.0,0.394066780795854,0.0,0.0,0.2913612937336682,0.0,0.1939726411603986,0.0,0.955214157303174,3.630174160003662,2.932992458343506,1,1,2,1,5,0.03185083,0.012769829,0.017023152,0.015764635,-0.018051932,-0.021867642,-4.913091e-09,-0.009326215,-0.03402104,-0.0036815307,-0.029870313,0.011914792,-0.0008409085,0.0002494951,-0.06762158,-0.020234672,-0.03021057,-7.319153e-09,-1.694423e-09,0.107174546,0.00023375353,0.007869332,0.1076923076923077,1.0,0.8923076923076924,0.6030534351145038,131,25.0,83.70481167919554,88.02047630505902,0.7265238164618408,0.714654538181616,201.48236451158016,181.4096233583911,7,131 +188.0,0.0,0.0,0.0,0.0,0.0,0.31230468305960407,0.0,0.0,0.0,0.7641118967214158,0.0,0.8451966110425083,0.0,0.541970509036431,5.340773105621338,1.9383043050765991,2,1,1,0,4,0.07183796,-0.031108126,0.035791297,-0.033172846,0.047874603,0.106110014,-6.0221805e-10,0.05658791,0.028452056,0.04681114,0.08180027,-0.041043602,0.016750745,0.00075416436,0.109316394,0.051511157,0.07821884,-5.484787e-10,-6.580933e-09,0.0069997446,0.0007059528,-0.13917063,0.26356589147286824,0.9358974358974359,0.7364341085271318,0.6076923076923076,130,14.70225873,156.20054372388262,164.16306372990994,0.5483884888094426,0.5318486093859998,341.55996187393526,324.40108744776524,6,130 +352.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.09118673619664094,0.0,1.1178893475224918,0.5692787054789107,0.0,0.8836508304874111,0.0,0.9482252325614288,5.387842178344727,3.376068115234375,1,1,1,2,5,0.022185996,0.018813064,0.015012529,0.0038882555,0.074015774,0.061582323,-1.1738491e-09,0.038127497,0.005858779,-4.0304727e-05,-0.01912474,-0.05285634,-0.009212071,0.00021305149,-0.043588754,-0.09715582,0.08853062,-2.7200218e-09,-1.861742e-10,0.1517966,0.0001971702,-0.02109647,0.2846153846153846,0.9864864864864865,0.7153846153846154,0.5725190839694656,131,26.0,231.60963642378792,231.99006222189956,0.41312451353893354,0.41252508919943504,497.29201400076494,477.21927284757584,7,131 +443.0,0.0,0.0,0.0,0.0,0.9909638766189265,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.9971533819039664,4.866328716278076,0.5612534284591675,1,0,1,0,2,-0.08114747,0.0126040755,-0.03456825,-0.018500157,0.03461411,0.04430608,2.986425e-10,-0.09105937,-0.07550834,-0.016919082,0.046324477,-0.027208567,-0.0062506483,-9.594923e-05,0.06253763,0.0674097,0.059890978,-5.616577e-10,2.1233489e-10,-0.13168272,-8.8893205e-05,-0.06198912,0.3,0.9857142857142858,0.7,0.5419847328244275,131,18.91666667,207.85948448274036,194.30679765013446,0.45232387822369896,0.4763373302896554,435.18910676730303,423.7189689654807,4,131 +314.0,0.0,0.5726618394661764,0.0,0.0,0.9315898300312744,0.0,0.1262142883915549,0.0,0.8967994763814956,0.0,0.0,0.0,0.4801743669493666,0.8408872927228612,2.3984646797180176,0.0697627067565918,1,2,1,2,6,0.014866814,0.0018671162,0.005185549,0.014674754,-0.102086514,-0.067960545,2.512134e-09,0.13382114,0.14451426,-0.014909034,-0.01774153,0.07057224,0.0001185837,0.009367796,-0.012137439,0.25415343,-0.10154491,-1.3297843e-09,8.2659675e-09,-0.18118064,0.0061019645,0.10388913,0.2923076923076923,0.9,0.7076923076923077,0.5419847328244275,131,25.0,136.14499445232713,134.78535317431277,0.5947361700781786,0.5978305580771893,311.2302645082989,288.28998890465425,8,131 +459.0,0.0,0.4004542640204202,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5828569897566485,0.0,0.8630495306131596,0.0,0.9758278467257818,2.233762264251709,2.7140374183654785,1,2,1,0,4,-0.0868667,-0.028999228,-0.032826915,-0.041039374,-0.08488716,-0.07373332,1.1581943e-09,0.089654535,0.15302968,0.03672989,0.102244325,0.06768827,0.016606348,0.00059084006,0.13762143,-0.11307756,-0.13500497,-1.477881e-09,-1.5449152e-09,0.08512364,0.0005498187,-0.1713859,0.24615384615384617,0.9384615384615385,0.7538461538461538,0.5038167938931297,131,18.25,160.40405825479155,172.38732792874697,0.5421409641066965,0.5179032136110056,350.0133232123166,332.8081165095831,6,131 +132.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5541222338692399,0.0,0.0,0.5185877618981046,0.0,0.6553308989604311,0.0,0.997382350762685,4.899775981903076,2.628037214279175,1,1,1,1,4,-0.10109274,0.0377551,-0.04182181,0.034893192,0.05988243,0.00070555496,1.0217992e-09,0.014630917,0.029983953,-0.04529603,-0.07939201,-0.037111487,-0.021448446,-0.00072525284,-0.10439861,-0.16316177,0.06914885,-1.3237093e-09,1.1042872e-09,0.07646259,-0.000678055,0.1155726,0.3923076923076923,0.9701492537313433,0.6076923076923076,0.5190839694656488,131,14.9705681,245.440217796712,255.06272545942596,0.3918819139821627,0.3777503116177064,520.0856422961575,502.880435593424,6,131 +434.0,0.0,0.0,0.0,0.0,0.0,0.0,0.10440685301162672,0.0,1.0851702783923982,0.20026946217320038,0.0,0.8987935986121491,0.0,0.9986169477303818,5.307981491088867,2.0628294944763184,1,1,1,2,5,-0.10313456,0.052736226,-0.04380709,0.010447874,0.07389492,0.035382066,-2.0715232e-09,-0.092056155,-0.086810365,-0.044388868,-0.039088413,-0.048482317,-0.028469468,-0.0005505032,-0.042654898,-0.13011706,0.09433215,5.5598552e-09,2.6519609e-09,0.019540645,-0.0005113185,0.07086041,0.2153846153846154,1.0,0.7846153846153846,0.5190839694656488,131,23.0,193.6690590835187,192.7406093271054,0.47749820320105346,0.47919331594606523,421.4108593202265,401.3381181670374,7,131 +330.0,0.0,0.5994243833456891,0.0,0.0,1.1422513906341485,0.0,0.0,0.0,0.0,0.2599065343451121,0.0,-0.04772786287823492,0.0,0.8042301680644353,5.397465229034424,3.524381637573242,1,2,2,0,5,0.041892216,0.01646432,0.06015093,-0.03165451,0.054191254,0.050459266,-2.6347537e-09,0.12501119,0.07759402,-0.015394101,0.07894339,-0.059435744,-0.008475261,-0.00016165295,0.106028624,0.19639997,0.10614091,-1.0612412e-09,-7.1427726e-09,0.16673324,-0.00015479988,-0.12404398,0.09230769230769231,1.0,0.9076923076923077,0.6335877862595419,131,25.0,64.73167002891947,90.35726887614916,0.7810880129466211,0.7083088355141026,163.536081211028,143.46334005783893,7,131 +321.0,0.0,0.0,0.0,0.0,0.9164218822506288,0.0,0.7359686113727509,0.0,0.0,0.3088551230952891,0.0,0.0,0.0,0.9594812363386146,4.896352767944336,0.7005774974822998,1,1,1,1,4,0.030546589,0.007558628,0.013217495,0.026342964,0.03146141,0.039926726,-8.4072355e-10,-0.04917168,-0.07810928,-0.010799739,-0.06281482,-0.03061265,-0.003515862,-0.000120101475,-0.08303014,0.15965205,0.06727247,2.426183e-10,-4.0555732e-11,-0.11765143,-0.00011388069,0.10782204,0.36153846153846153,0.9722222222222222,0.6384615384615384,0.549618320610687,131,26.0,236.9178789172574,228.33973271910133,0.4048386390260697,0.4183128433176286,503.0409645372483,485.8357578345148,6,131 +134.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5956854182342222,0.0,0.7015699865480559,0.0,0.857983682354291,3.238891124725342,1.3849185705184937,1,1,1,0,3,0.060020253,-0.024839038,0.03309552,-0.0070844176,-0.04896336,-0.016656341,7.324098e-10,0.05031048,0.044775113,0.025030565,0.016863452,0.034135256,0.01732954,0.0006412243,0.022951374,0.059837367,-0.060027257,-2.1885946e-10,-3.035291e-09,-0.048731603,0.0005943967,-0.033769157,0.3230769230769231,0.9375,0.676923076923077,0.4961832061068702,131,12.92265572,143.38229398069336,144.359839737628,0.5785324364208446,0.5763779013242936,311.10226021366464,296.7645879613867,5,131 +157.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.12771518958614564,0.0,0.8371261119262944,0.7483431557349134,0.0,0.916535387285984,0.0,0.9934684429566056,5.527547836303711,3.360687017440796,1,1,1,2,5,-0.10699024,0.029199742,-0.04198842,-0.018195396,0.087849244,0.060609333,-1.107943e-10,0.07067444,0.07734759,-0.022263724,0.0072232676,-0.06000552,-0.019661793,0.00026982656,0.011437754,-0.11981333,0.09722187,-1.2178685e-09,-1.1496313e-08,0.15024757,0.00038913006,-0.058035146,0.23846153846153847,0.9885057471264368,0.7615384615384615,0.6717557251908397,131,12.83778234,183.98668337805185,186.59401662749843,0.4954745694508321,0.4905682317346886,402.0461079092928,381.9733667561037,7,131 +100.0,0.0,0.0,0.0,0.0,0.7377638503163005,0.0,0.0,0.0,0.0,0.22030741312731064,0.0,0.2884654318141977,0.0,0.997240603367488,2.7935290336608887,0.8423309326171875,1,1,2,0,4,-0.0858115,-0.0030120492,-0.036111537,-0.0014137811,-0.05631124,-0.05184926,6.8869727e-10,-0.043155044,-0.01438696,-0.0010945415,0.0036507961,0.05358743,0.00302049,0.0001501949,0.010261858,-0.06487273,-0.090775855,-5.6145276e-11,-2.4666144e-12,-0.10337548,0.00013996467,-0.0028309661,0.27692307692307694,0.9848484848484849,0.7230769230769231,0.5114503816793893,131,10.39288159,147.85210287128666,151.34536784550517,0.5687461924541353,0.5612133875899609,324.9094124453068,307.7042057425733,6,131 +72.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.3495962312787672,0.0,0.9900593908573495,0.0,0.9952275530497225,5.027576923370361,0.0,1,1,1,0,3,-0.048277266,0.017994722,-0.020104552,-0.02590827,0.057017785,0.04594295,9.1199376e-10,-0.013351395,0.00047257275,-0.024493549,0.06475384,-0.030608438,-0.009988937,-0.00020895376,0.08750723,-0.1563103,0.06648637,-2.6589073e-10,-1.4469361e-09,-0.18820664,-0.00019439375,-0.080069065,0.4,0.9324324324324325,0.6,0.5725190839694656,131,10.07802875,244.30594448013704,270.2136349896371,0.39358216121515377,0.35652541481367844,508.0820267620964,496.6118889602741,4,131 +438.0,0.0,0.0,0.0,0.0,0.5387024457129993,0.0,0.9097388275092261,0.0,0.0,0.0,0.0,0.3957151551256513,0.0,0.9980136869351066,3.6775479316711426,0.0,1,0,2,1,4,-0.11049485,0.1037845,-0.0458837,0.06905242,0.01140198,-0.10334209,-1.3258583e-09,0.000612683,-0.0125178015,-0.13357955,-0.17307031,0.0059207343,-0.05875602,-0.0019411783,-0.23308805,-0.08934448,0.0024897505,3.8240273e-09,2.5075229e-09,-0.18820672,-0.0018168743,0.3200446,0.2846153846153846,0.9692307692307692,0.7153846153846154,0.4961832061068702,131,21.08333333,219.71387486283643,213.09748438921054,0.43231422787393553,0.44337064999397174,463.7654219779508,449.42774972567287,5,131 +46.0,0.0,0.8074245588678404,0.0,0.0,0.0,0.0,0.0,0.0,0.6480807759364375,0.23008272970128046,0.0,0.887733074487186,0.0,0.8597697052359581,2.5980281829833984,0.0,1,2,1,1,5,-0.04022113,0.014061723,-0.008849301,-0.01783696,-0.06159531,-0.0674694,1.711576e-09,0.12687281,0.19932845,-0.033374596,0.040335726,0.0653883,-0.0004863541,-0.00019042542,0.071955055,-0.111248665,-0.10124754,-5.425554e-10,4.5065768e-10,-0.18820684,-0.00013173318,-0.02853997,0.6046511627906976,0.5846153846153846,0.3953488372093023,0.5,130,13.26488706,211.90647393480236,227.89718809034585,0.4426283058903126,0.41622568804125953,452.97182229577476,435.8129478696047,6,130 +218.0,0.0,0.0,0.0,0.0,0.8025214392232253,0.0,0.0,0.0,0.0,0.3517762026858568,0.0,0.2747565845542266,0.0,0.9936470621824258,3.885078191757202,3.0946147441864014,1,1,2,0,4,-0.0539772,-0.0012260595,-0.02248327,-0.0033801608,-0.004855429,-0.009640884,-5.808632e-10,-0.009402671,0.011911759,0.0022786083,0.005789276,0.0032743453,0.0023493967,0.00019582066,-0.002251587,-0.040093414,-0.012595595,-1.4320889e-09,-1.198372e-09,0.1234515,0.00018165013,-0.026641937,0.1076923076923077,1.0,0.8923076923076924,0.6030534351145038,131,13.99863107,99.89123448621275,110.1680669119576,0.6829973811420421,0.6567257305208084,228.98767567515898,211.7824689724255,6,131 +440.0,0.0,0.0,0.0,0.0,0.7952524000968633,0.0,0.0,0.0,0.0,0.30482032943678916,0.0,0.2513686891349282,0.0,0.9400244959195456,6.615596294403076,1.9484926462173462,1,1,2,0,4,0.014536839,0.04536638,0.0460932,-0.022434693,0.13409154,0.08295119,-4.0875485e-09,0.060206622,0.0068628322,-0.055577274,0.056306954,-0.09668389,-0.025159605,-0.0007711731,0.07593937,-0.002739461,0.1965597,-1.8824082e-09,-2.27527e-09,0.008025809,-0.0007207644,-0.067124784,0.12307692307692308,1.0,0.8769230769230769,0.6183206106870229,131,21.0,95.27774377749364,95.0323922057737,0.6951306186300018,0.6957818830259311,219.7606942577208,202.55548755498728,6,131 +351.0,0.0,0.0,0.0,0.0,0.69288765823813,0.0,0.0,0.0,0.6522719737530552,0.5239953844742631,0.0,0.4021889856183977,0.0,0.9430402155717211,5.9121479988098145,5.289551258087158,1,1,2,1,5,0.036671292,0.0038172374,0.017948532,-0.006028138,0.09489054,0.075581945,-9.1997204e-10,0.019077597,0.003037399,-0.0034855376,0.010076892,-0.0698168,-0.00039845484,0.00011258977,-0.0022810698,-0.063675016,0.13576587,2.9279953e-10,-3.6271048e-09,0.34450305,0.00010399711,-0.04129928,0.08461538461538462,1.0,0.9153846153846154,0.5954198473282443,131,26.0,54.205891787556425,76.02654949627167,0.8131068780598356,0.7481306355247579,142.48452472830192,122.41178357511285,7,131 +312.0,0.0,0.0,0.0,0.0,0.7742433023440534,0.0,0.0,0.0,0.0,0.3954532199779082,0.0,0.3194983777008775,0.0,0.9712433046102521,4.573486804962158,2.422211170196533,1,1,2,0,4,0.026409237,-0.026009433,0.008963499,-0.012351023,0.024067959,0.0507069,8.3239715e-10,-0.04245708,-0.04353954,0.031983744,0.030326461,-0.016820645,0.01615723,0.00068500795,0.040649645,-0.055704635,0.024894174,3.7043257e-10,1.8714e-09,0.055733897,0.00063904317,-0.061573002,0.2153846153846154,0.9864864864864865,0.7846153846153846,0.5725190839694656,131,27.0,117.55178453644317,125.76300554778487,0.6384761653448059,0.618776293438258,264.30877577561984,247.10356907288633,6,131 +448.0,0.0,0.0,0.44974417426607144,0.0,0.7547636387437817,0.0,0.3744961677096505,0.0,0.0,0.12079814251623347,0.0,0.29798776523489484,0.6405102722080207,0.9637786153952279,1.1739416122436523,1.1710879802703857,1,2,2,2,7,-0.00031975078,-0.031729124,0.0031817232,0.03654146,-0.13290435,-0.14348531,-3.3664573e-09,0.046454076,0.06311663,0.021716932,-0.030874953,0.11001018,0.040601607,0.0010273128,-0.048647944,-0.08187328,-0.19848622,9.5776205e-09,4.4995843e-09,-0.07026644,0.00079581817,0.058645025,0.33076923076923076,0.8360655737704918,0.6692307692307692,0.46564885496183206,131,28.0,157.6668216863268,152.97894183988362,0.5478346549195254,0.557725099627263,359.14145342675386,333.3336433726536,9,131 +160.0,0.0,0.8945699295918402,0.0,0.0,0.9512751296295008,0.0,0.0,0.0,0.5176759750239232,0.12640554018899644,0.0,0.0,0.0,0.9263773157199213,4.413668155670166,1.4547067880630493,1,2,1,1,5,-0.06379596,0.03166799,-0.022037718,-0.038176037,-0.0015608382,-0.0019626133,1.47761e-10,0.16003312,0.18135193,-0.04239044,0.06838237,-0.021432983,-0.02603675,-0.00038951106,0.052216146,0.31687504,0.04662188,-1.974983e-09,4.3529907e-10,-0.04170325,-0.00039339665,-0.06965568,0.25384615384615383,0.9529411764705882,0.7461538461538462,0.6564885496183206,131,13.7522245,190.16874219981378,172.08953773257645,0.4839203780825171,0.5184921990308821,414.41022555281666,394.33748439962756,7,131 +306.0,0.0,0.0,0.0,0.0,0.9472101107913802,0.0,0.7940900891924663,0.0,0.0,0.23703246212324555,0.0,0.0,0.0,0.9811420581738142,5.593891143798828,2.0169119834899902,1,1,1,1,4,-0.0023624422,0.04559661,-0.0024652104,0.03169111,0.06858388,0.03861805,3.7139655e-10,-0.05172063,-0.07912183,-0.059732784,-0.07690733,-0.0664919,-0.024712753,-0.00089315797,-0.106110565,0.20980757,0.12924424,-3.3031863e-10,-1.8416431e-10,0.014916296,-0.00083379255,0.13624012,0.3671875,0.9859154929577465,0.6328125,0.5581395348837209,129,28.0,225.5329535829366,233.23810237415418,0.4172128587351856,0.4049370513938675,480.17808874939095,463.0659071658732,6,129 +94.0,0.0,0.6273634488397469,0.0,0.0,1.0603357235785946,0.0,0.0,0.0,0.0,0.24279910720057518,0.0,0.0,0.0,0.9817261022329331,4.410915374755859,1.9856126308441162,1,2,1,0,4,-0.055965,0.0117558185,-0.020160902,-0.03260182,0.0033883937,0.016510319,-1.2748282e-10,0.09800314,0.12523958,-0.018532155,0.08029719,-0.018321197,-0.008030244,-0.00010281515,0.10715027,0.19421072,0.033686917,1.6962335e-09,-1.3493276e-09,0.011764154,-0.00010030854,-0.12236805,0.3,0.961038961038961,0.7,0.5877862595419847,131,12.84599589,188.30859724992513,181.50777962233576,0.48736833649470745,0.5001847319884393,405.82240120258376,388.61719449985026,6,131 +141.0,0.0,0.0,0.0,0.0,0.9105356029905767,0.0,0.0,0.0,0.0,0.4428156177236086,0.0,0.19137632319826844,0.0,0.9796469517548873,5.832140922546387,4.291175365447998,1,1,2,0,4,-0.015039296,0.016478427,-0.0058477344,-0.011493005,0.08597271,0.06637923,-4.7357396e-10,0.031535204,0.030471837,-0.018829439,0.027205208,-0.0693785,-0.007824924,-0.00022637584,0.035260633,0.033932935,0.13537686,8.6894736e-10,3.5600758e-10,0.24395683,-0.00021235846,-0.040706687,0.13076923076923078,1.0,0.8692307692307693,0.648854961832061,131,11.48528405,85.60104847183236,117.41741994775867,0.7212845502222048,0.6388036866772304,200.4073036463982,183.2020969436647,6,131 +26.0,0.0,0.0,0.0,0.0,0.5414101053754162,0.0,0.937697752107894,0.0,0.0,0.0,0.0,0.4568499331519124,0.0,0.9989592399199801,2.7943196296691895,2.8613193035125732,1,0,2,1,4,-0.12908193,0.18820597,-0.054486945,0.05062096,-0.018147347,-0.21606103,1.1877622e-09,-0.10868465,-0.17116426,-0.24157788,-0.13577735,0.011316089,-0.10609255,-0.004404528,-0.1874485,-0.12670714,-0.03975551,1.528077e-10,2.184595e-10,0.09995636,-0.004100436,0.29181394,0.32558139534883723,0.9142857142857143,0.6744186046511628,0.5461538461538461,130,8.027378508,152.3671801583634,159.33195013247445,0.5565336649680561,0.5418233827038033,333.8932347428968,316.7343603167268,6,130 +338.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5717413494718514,0.0,0.0,0.30007889986436914,0.0,0.7752175160249072,0.0,0.9979927806059508,2.430887222290039,1.093738079071045,1,1,1,1,4,-0.10831476,0.010025183,-0.048979945,0.03318926,-0.056704905,-0.09168255,-1.973367e-09,-0.008084849,-0.010080084,-0.022054136,-0.04961857,0.066557445,-0.0040543117,-0.0064248163,-0.0342364,-0.12195108,-0.1142877,-1.1735618e-10,-2.2904587e-09,-0.07805633,-0.0060068117,0.104580276,0.2923076923076923,0.9054054054054054,0.7076923076923077,0.5648854961832062,131,25.0,156.43870260837951,155.603484781586,0.5504086455299471,0.5521660678125501,342.08261191949254,324.87740521675903,6,131 +59.0,0.0,0.6303615669460103,0.0,0.0,0.8577790353847125,0.0,0.0,0.0,0.0,0.2696726726367503,0.0,0.257402320167684,0.0,0.8912461125850674,4.7344970703125,0.5462044477462769,1,2,2,0,5,0.023413414,0.02197547,0.023942992,-0.03365195,0.031696476,0.04315358,1.9091248e-10,0.1009696,0.13104479,-0.031445995,0.07939318,-0.02141214,-0.01333032,-0.000257384,0.118678845,-0.017368602,0.045858108,-3.135867e-10,2.2725481e-09,-0.1331983,-0.00023623991,-0.10510975,0.5230769230769231,0.7777777777777778,0.47692307692307695,0.48091603053435117,131,9.505817933,229.28700196426794,216.41564810799412,0.4168031508830861,0.4377908806408886,492.646745081725,472.5740039285359,7,131 +147.0,0.0,0.0,0.0,0.0,0.672537314177741,0.0,0.6517869200196155,0.0,0.0,0.4404232043548668,0.0,0.3248759667663981,0.0,0.9971493393182753,1.6048915386199951,1.0643848180770874,1,1,2,1,5,-0.098000474,-0.010100044,-0.041059416,0.021593083,-0.1145918,-0.10597655,1.1066567e-09,-0.008612715,0.032264933,0.013414628,-0.052983616,0.1056607,0.005465744,0.00019615924,-0.07001423,-0.106116064,-0.17098525,-1.9323572e-10,-5.8195204e-10,-0.08101248,0.00018022883,0.07918677,0.4076923076923077,0.7941176470588235,0.5923076923076923,0.5267175572519084,131,10.86379192,163.11904555628564,158.488189899311,0.5365520108196544,0.5461198863113195,360.3108322657604,340.2380911125713,7,131 +106.0,0.0,0.0,0.0,0.0,0.609141991278,0.0,0.5084378903663175,0.0,0.0,0.21106071598566195,0.0,0.42232494651855496,0.0,0.9770071450869239,4.5034565925598145,4.287240028381348,1,1,2,1,5,0.0014546175,0.03839818,0.038752895,0.03528096,0.038407627,-0.020081535,1.4917831e-09,-0.028030233,-0.08973949,-0.037682712,-0.06713607,-0.029939262,-0.02409752,-0.00026461313,-0.122349784,-0.0709175,0.04037554,-1.873242e-09,-7.851062e-10,0.24356052,-0.00024151363,0.02683199,0.12307692307692308,0.975609756097561,0.8769230769230769,0.6259541984732825,131,13.46475017,85.78358755778613,86.22283024653291,0.7207821961475509,0.7195748180187833,205.63991626876134,185.56717511557227,7,131 +139.0,-0.0001943073144785825,0.0,0.0,0.0,0.0,0.0,0.5224894423685642,0.0,0.0,0.34833483701964274,0.0,0.84684314519167,0.0,0.9957930634926802,3.594449758529663,0.0,2,1,1,1,5,-0.059206747,0.0146679245,-0.024647212,0.01310795,-0.009144047,-0.02775092,1.3231998e-09,-0.02485255,-0.016423142,-0.02072854,-0.032305278,0.028533477,-0.007679372,-0.00022351347,-0.041580483,-0.12143457,-0.029717574,-1.907372e-09,-1.9543149e-10,-0.18820687,-0.00020908623,0.05964398,0.35384615384615387,0.9113924050632911,0.6461538461538462,0.6106870229007634,131,13.25667351,200.78636558460346,201.65685768363483,0.4647014261219553,0.4631600228446395,430.7779378719404,413.5727311692069,6,131 +138.0,0.0,0.0,0.0,0.0,0.9326808490661609,0.0,0.9181077048647833,0.0,0.0,0.29231318644867793,0.0,0.0,0.0,0.9971450140078867,4.798259735107422,0.0,1,1,1,1,4,-0.080554515,0.006963605,-0.034427453,0.039025445,0.029451625,0.036244012,5.067246e-10,-0.09533012,-0.085807234,-0.0095075695,-0.096128866,-0.023602854,-0.0033334366,-6.700028e-05,-0.12861222,0.12135568,0.05969603,-1.6241936e-09,-5.4984295e-10,-0.18820657,-6.296713e-05,0.15158091,0.3153846153846154,0.9642857142857143,0.6846153846153846,0.6412213740458015,131,10.62286105,230.93470804247943,226.41165291301442,0.414190120061264,0.42140259728172025,486.20708833723677,471.86941608495886,5,131 +463.0,0.0,0.4145500171529648,0.0,0.0,0.5611927444849917,0.0,0.0,0.0,0.0,0.45754652632129356,0.0,0.49909022970075195,0.0,0.9482276572783787,5.966923713684082,3.464040756225586,1,2,2,0,5,-0.030060751,0.017826196,0.019026272,-0.02857412,0.10172107,0.09157384,-1.1706609e-09,0.106588855,0.05766143,0.0011503653,0.062313616,-0.07373745,-0.01559397,0.00022943273,0.07212162,-0.0739543,0.12811616,-1.9654824e-09,-5.2581393e-09,0.1606563,0.00023161316,-0.11557072,0.2923076923076923,1.0,0.7076923076923077,0.5572519083969466,131,20.58333333,237.86708590279088,220.14303665346003,0.40337459168776124,0.4316066672719923,509.80691295877085,489.73417180558175,7,131 +116.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5479791675223955,0.0,0.0,0.32689257688745593,0.0,0.9440504001080983,0.0,0.9954445938269298,2.291700839996338,0.35087037086486816,1,1,1,1,4,-0.04349265,-0.0069281175,-0.018334018,0.019466985,-0.067044616,-0.077090636,-1.0580341e-09,-0.05162808,-0.045778602,0.008659146,-0.046552766,0.09134822,0.0031599768,8.8291905e-05,-0.055775627,-0.18063189,-0.12456463,-1.9673425e-09,-1.3330558e-09,-0.15287036,8.241906e-05,0.07561846,0.4076923076923077,0.8666666666666667,0.5923076923076923,0.46564885496183206,131,10.2696783,182.5835925166352,188.7992098363959,0.4981351063287537,0.48645656051782943,394.3723917360039,377.1671850332704,6,131 +197.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5857690683376028,0.0,0.0,0.3771936076640285,0.0,0.5922619925936066,0.0,0.9987534280618022,3.4532527923583984,1.6817278861999512,1,1,1,1,4,-0.142314,0.025835343,-0.05925876,0.028223082,-0.014566444,-0.053216968,-9.64772e-10,-0.026645346,0.01044112,-0.03339906,-0.06781467,0.02042888,-0.014278638,-0.0005087002,-0.08829957,-0.11546265,-0.036018692,4.830729e-10,4.581463e-10,-0.018840011,-0.0004753688,0.114488035,0.36923076923076925,0.9384615384615385,0.6307692307692307,0.5038167938931297,131,9.281314168,194.21471998381793,208.72684107778764,0.4765047644032898,0.4508289262659225,417.63464667036936,400.42943996763586,6,131 +152.0,0.0,0.6587738462587449,0.0,0.0,1.0723402643753905,0.0,0.0,0.0,0.5170467060655912,0.22991090217354407,0.0,0.012615833987640487,0.0,0.902346412539482,5.961377143859863,3.8009424209594727,1,2,2,1,6,0.015535217,0.029316206,0.017482711,-0.019137647,0.08517525,0.08016545,-2.2576794e-09,0.10319216,0.05559007,-0.014561617,0.035147104,-0.0805606,-0.018957771,3.5471992e-06,0.0106038,0.11935673,0.14141029,2.71783e-09,4.5199795e-09,0.19458559,6.300598e-06,-0.0814988,0.16153846153846155,0.9875,0.8384615384615385,0.6183206106870229,131,13.2073922,118.41949859580531,137.11666441817113,0.6363651029767524,0.5925345784648014,275.7792727952553,252.83899719161062,8,131 +144.0,0.0,0.0,0.0,0.0,0.8462334512069564,0.0,0.0,0.0,0.0,0.31868413150509867,0.0,0.2444532664120744,0.0,0.9975839070479077,3.4943742752075195,0.3411768674850464,1,1,2,0,4,-0.08513869,-0.027309164,-0.035525423,0.006885255,-0.032730874,0.006451224,9.2222424e-11,-0.080887035,-0.046877023,0.03339034,-0.01552851,0.03594076,0.015540048,0.0006059073,-0.016813643,-0.001497751,-0.04559081,3.2581307e-10,-2.5750438e-10,-0.15384659,0.00056428736,0.016361825,0.4230769230769231,0.9523809523809523,0.5769230769230769,0.48854961832061067,131,12.47912389,219.22346831464714,227.52060252870712,0.4331241831027205,0.4196227245430969,467.6521433320278,450.44693662929427,6,131 +361.0,0.0,0.45114218687626256,0.0,0.0,0.9655353380493634,0.0,0.0,0.0,0.0,0.4666098310347909,0.0,0.12707921484302853,0.0,0.8737447521090502,7.082242488861084,3.3956263065338135,1,2,2,0,5,0.01254761,0.016422408,0.0109997755,-0.030104069,0.14321676,0.14542314,1.5030562e-09,0.08175406,0.0688089,0.0009259432,0.06549573,-0.11765768,-0.015140055,0.00015117064,0.07011281,0.0151062915,0.21255594,3.3489744e-09,3.907822e-09,0.1537663,0.00013598938,-0.123115286,0.3230769230769231,1.0,0.676923076923077,0.5572519083969466,131,26.54860508,278.0442457012471,244.99807497494584,0.3460273090972285,0.39254379970010705,590.1612325556833,570.0884914024942,7,131 +196.0,0.0,0.0,0.0,0.0,0.7869102252908035,0.0,-0.02015849076596157,0.0,1.106347858066141,0.2984099873003777,0.0,0.0,0.48968502756211507,0.9956840503215783,1.4831523895263672,1.1573460102081299,1,2,1,2,6,-0.10822292,-0.035519823,-0.044937965,0.008851429,-0.16075638,-0.08884006,1.136388e-09,0.020924902,0.08592075,0.04219927,-0.017646335,0.10396456,0.02104076,0.000737042,-0.03276838,0.31839937,-0.16981553,-2.9105849e-09,-1.8325388e-09,-0.07165038,0.0006864385,0.018932808,0.4496124031007752,0.7761194029850746,0.5503875968992248,0.5230769230769231,130,16.23271732,152.77692493254472,151.76104621228308,0.5556572912413614,0.5578326167484354,344.4323490999828,321.55384986508943,8,130 +212.0,0.0,0.0,0.0,0.0,0.9714820502373714,0.0,0.6310338412242168,0.0,0.0,0.284904043461168,0.0,0.06847392789349462,0.0,0.9480869754155478,7.896671295166016,3.7663960456848145,1,1,2,1,5,0.06784661,0.0018407468,0.027894882,0.026780887,0.18363196,0.17959376,-2.415767e-10,-0.11129562,-0.1594016,-0.0019038852,-0.064235106,-0.1434581,-4.184861e-05,4.1820527e-05,-0.09420655,0.059668604,0.27372107,8.1957313e-10,5.7306857e-11,0.19110642,3.6725818e-05,0.06553918,0.3230769230769231,1.0,0.676923076923077,0.5572519083969466,131,14.71321013,286.387098518799,273.3896522268674,0.33518236280198777,0.3522296310771426,606.8469381907871,586.774197037598,7,131 +123.0,0.0,0.0,0.0,0.0,0.0,0.0,0.363573660606045,0.0,0.0,0.5264782290594233,0.0,0.9128607194405033,0.0,0.8608194303512571,5.0332746505737305,2.4575634002685547,1,1,1,1,4,0.09181387,-0.029801084,0.04513545,-0.00072571385,0.0478993,0.07748535,4.619648e-09,-0.008442738,-0.04748066,0.039390076,-0.004877824,-0.030999286,0.018064674,0.0006721704,-0.0065955985,-0.105619185,0.054564733,4.961045e-10,3.3729595e-09,0.059294213,0.0006260177,-0.02464777,0.17692307692307693,1.0,0.823076923076923,0.6412213740458015,131,14.91854894,99.61280099879994,116.13883434456258,0.6837236041466979,0.6419287301502355,228.4308087003334,211.22560199759988,6,131 +162.0,0.0,0.0,0.0,0.0,0.8791384603003009,0.0,0.0,0.0,0.0,0.0,0.0,0.12100290286722389,0.0,0.9899480672677354,3.1979756355285645,2.1836795806884766,1,0,2,0,3,-0.009766083,0.014067575,-0.005101417,-0.033179708,-0.035858702,-0.041068424,9.842513e-10,-0.102716275,-0.1076615,-0.02115168,0.08408044,0.03083167,-0.006349211,-2.4338557e-05,0.11359527,-0.05461752,-0.061863586,2.3777542e-09,2.7054195e-10,0.031711433,-1.9165107e-05,-0.124698825,0.14615384615384616,0.9864864864864865,0.8538461538461538,0.5648854961832062,131,16.19438741,121.77606507209484,120.12365290300458,0.6282644254527439,0.6322393584441357,267.8898023964676,253.55213014418968,5,131 +110.0,0.0,0.0,0.0,0.0,0.9973916407236647,0.0,0.0,0.0,0.0,0.47409213576029796,0.0,0.0,0.0,0.9961724950869872,3.5893568992614746,0.511478066444397,1,1,1,0,3,-0.10069038,-0.001242089,-0.04146225,-0.015694708,-0.037003938,-0.0027957032,1.0872115e-09,0.022645527,0.08653932,-0.009982373,0.039061427,0.021910558,0.002486352,0.00018147139,0.052899197,0.16619544,-0.030230613,-3.506752e-09,-1.3225901e-09,-0.1366956,0.00016824673,-0.05250427,0.36923076923076925,0.9324324324324325,0.6307692307692307,0.5648854961832062,131,11.25256674,213.74588373666288,209.9123907425715,0.4422747499818976,0.448793534496948,451.82943972560366,437.49176747332575,5,131 +415.0,0.0,0.35321868501939807,0.0,0.0,0.3967694766856289,0.0,0.0,0.0,0.616316472974965,0.7198475426604329,0.0,0.5772297868317182,0.0,0.9977429648240409,1.567324161529541,2.080934762954712,1,2,2,1,6,-0.23718855,-0.06555358,-0.09769442,-0.015103486,-0.12475203,-0.09371852,-3.0435485e-10,0.017344126,0.1651215,0.073158264,0.03751124,0.10478595,0.041800257,0.0013182272,0.03317278,-0.1256981,-0.17753516,-1.8116636e-09,-3.2369891e-09,0.021364031,0.0012340805,-0.08746119,0.4,0.8,0.6,0.4580152671755725,131,19.0,161.5048121976505,166.18027999569244,0.5398680177306752,0.5303193653149134,361.9498999989456,339.009624395301,8,131 +300.0,0.0,0.0,0.0,0.0,0.8093837829296527,0.0,0.0,0.0,0.8566341016925255,0.6213546694820141,0.0,0.24709292793213783,0.0,0.9112218314409252,4.761889457702637,5.5297441482543945,1,1,2,1,5,-0.018555509,0.022487113,0.048788175,-0.0037198195,0.040978882,0.0030248547,3.7253165e-09,0.10877552,0.08682222,-0.016401712,0.005699049,-0.032400254,-0.0127548985,-2.2254155e-05,-0.0038680518,-0.023465225,0.062041868,-4.3029777e-10,-2.2723232e-09,0.36869285,-2.2057926e-05,-0.036377173,0.08461538461538462,1.0,0.9153846153846154,0.6030534351145038,131,30.0,92.86911203589071,91.95140854568461,0.7015505938364812,0.7040122132543993,219.8109652249705,199.73822407178142,7,131 +318.0,0.0,0.0,0.0,0.0,0.5634134939692974,0.0,0.6954034523272195,0.0,0.0,0.3656319804664041,0.0,0.4320464063937035,0.0,0.9738741900523498,2.705406665802002,2.393040895462036,1,1,2,1,5,0.0160404,0.00544964,0.007911051,0.038667858,-0.05480017,-0.07798075,3.416384e-09,-0.006029428,-0.0284179,-0.008729341,-0.07019709,0.046213653,-0.00047247417,2.479091e-06,-0.093676984,-0.096172884,-0.09301301,-2.6048472e-09,-1.5025536e-09,0.052796155,4.4961575e-06,0.08317383,0.3046875,0.9130434782608695,0.6953125,0.5426356589147286,129,27.0,159.92914937777726,170.58177236925198,0.5380087667144341,0.5162471473967251,353.8225106029918,333.85829875555453,7,129 +446.0,0.0,0.0,0.0,0.0,1.0363753108039062,0.0,0.0,0.0,0.7829367597565492,0.4665575180215182,0.0,0.0,0.0,0.9913995116949077,0.9969081878662109,0.9059072732925415,1,1,1,1,4,-0.05356339,-0.046242334,-0.022426866,-0.00053249794,-0.17200719,-0.10802943,-4.0009204e-10,0.0007911691,0.05580379,0.0508015,0.001311028,0.13368404,0.029173914,0.0009898738,0.0015446991,0.14796306,-0.20843618,3.028502e-09,3.9471826e-09,-0.09697272,0.00092396163,-0.017166808,0.4153846153846154,0.7619047619047619,0.5846153846153846,0.48091603053435117,131,21.91666667,157.328363003961,157.80713030019035,0.5485428198505963,0.5475413520845465,343.8619327106555,326.656726007922,6,131 +136.0,0.0,0.0,0.0,0.0,0.8126824406063726,0.0,-0.08778547594444525,0.0,1.0593659637160868,0.49150431154912516,0.0,0.2663050501681673,0.0,0.9571956833203631,2.850386381149292,2.051070213317871,1,1,2,2,6,0.011831433,-0.01694169,0.0071786335,0.0018920553,-0.057201628,-0.0444493,-7.52151e-11,0.035858467,0.04167743,0.00555818,-0.007600353,0.046366517,0.0140956575,0.00060435216,-0.010871887,-0.05787208,-0.089674346,-2.2209388e-09,3.901492e-09,0.018356387,0.00056788966,2.784677e-05,0.17692307692307693,0.9529411764705882,0.823076923076923,0.648854961832061,131,13.56605065,92.94736431466023,97.88870185512113,0.7013410910303904,0.6882377048762279,224.83500423296513,201.89472862932047,8,131 +348.0,0.0,0.0,0.0,0.0,0.8306125585190546,0.0,0.2765230930279504,0.0,0.0,0.0,0.0,0.2040707591739042,0.0,0.9973833004633582,5.1428375244140625,1.169678807258606,1,0,2,1,4,-0.08751375,0.026984833,-0.036620613,0.0047105695,0.05780551,0.041914128,-1.5208135e-09,-0.055854823,-0.038056456,-0.03492679,-0.011925363,-0.03944559,-0.0137309795,-0.00033714355,-0.014085315,-0.040054828,0.0810176,1.043262e-09,-4.4346746e-10,-0.07040835,-0.0003165152,0.03594099,0.19230769230769232,1.0,0.8076923076923077,0.6106870229007634,131,27.0,172.41493840701554,165.6809616957917,0.5178486380309199,0.5313310090163517,374.0350835167646,356.8298768140311,6,131 +111.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.4969224283926462,0.0,0.9574168981363376,0.0,0.9453726965188981,7.234382629394531,2.7761049270629883,1,1,1,0,3,0.05083478,0.028446801,0.024547482,-0.00755788,0.15860449,0.1534363,9.47784e-10,0.00024827296,-0.027038638,-0.026665235,0.0048532784,-0.112074465,-0.018307773,2.0122336e-05,0.013283491,-0.12113244,0.22300218,9.2549907e-10,3.4649483e-09,0.09137445,1.4434417e-05,-0.026363362,0.23076923076923078,1.0,0.7692307692307693,0.549618320610687,131,17.7357974,172.21049042060355,156.71675620944404,0.5182528915818717,0.5498248213910624,368.758653093485,354.4209808412071,5,131 +319.0,0.0,0.0,0.0,0.0,0.0,0.0,0.4278988805069995,0.0,0.0,0.6435415685974231,0.0,0.997373927157992,0.0,0.9414720424016314,4.483543395996094,2.254722833633423,1,1,1,1,4,0.02710581,0.0065753893,0.021166217,-0.0097453855,0.033028025,0.021299914,-4.0217962e-09,0.045883395,0.03620747,-0.007270679,0.007919486,-0.013694043,0.003177573,0.00021632003,0.02410548,-0.18478128,0.024584893,-2.0386644e-10,-4.3130335e-09,0.03886618,0.00020351936,-0.021134535,0.29457364341085274,0.9692307692307692,0.7054263565891473,0.5076923076923077,130,25.0,186.3170071340429,179.4677011184337,0.48840813835178637,0.5014454812191638,401.79288869425585,384.6340142680858,6,130 +315.0,0.0,0.0,0.0,0.0,1.2475847083695282,0.24586307764574486,-0.1562302229888622,0.0,0.6425911725713382,0.7877456939539383,0.0,-0.11421746859231187,0.0,0.39461095537237034,6.222677707672119,3.426697254180908,2,1,2,2,7,0.09083354,-0.025344882,0.062584236,-0.01623594,0.081206754,0.14615515,-2.4725528e-09,0.07454721,0.010871677,0.042195704,0.031306103,-0.07595153,0.015172401,0.00081058574,0.007832875,0.19503163,0.14604759,1.0502191e-09,-8.8252045e-10,0.15689546,0.0007521025,-0.09834989,0.2153846153846154,0.9861111111111112,0.7846153846153846,0.5572519083969466,131,25.0,133.30588371979593,150.82189300017333,0.6012159549795512,0.5623358103895371,310.4195774936921,284.61176743959186,9,131 +452.0,0.0,0.709764925966287,0.0,0.0,1.4678989971163499,0.0,0.0,0.0,0.0,0.24616966734500778,0.0,-0.37023218775884437,0.0,0.40178902200112726,3.7524147033691406,1.3396055698394775,1,2,2,0,5,0.07914583,-0.020389667,0.09424071,-0.031002136,-0.080685824,-0.011470402,1.902734e-09,0.14661567,0.07609478,0.014404753,0.06195855,-0.0014286252,0.017847592,0.0008289635,0.06489872,0.24115711,0.015886124,3.4453618e-09,4.4441064e-09,-0.053295072,0.00022549089,-0.088373266,0.27692307692307694,0.8970588235294118,0.7230769230769231,0.5267175572519084,131,18.0,160.9939167759764,151.1631563106913,0.5409217780044678,0.5616038269787696,356.0605747051419,335.9878335519528,7,131 +363.0,0.0,0.0,0.0,0.0,0.9792691126386354,0.0,0.0,0.0,0.8645878005750353,0.4867268328533124,0.0,0.0,0.0,0.9948129332065575,1.99955415725708,1.9408472776412964,1,1,1,1,4,-0.09098281,-0.020982701,-0.03778779,-0.00021133487,-0.11830221,-0.072561346,-3.4983762e-11,0.025389759,0.07539735,0.02632524,-4.91807e-05,0.07481637,0.012039111,0.00045775765,-0.006255401,0.22805394,-0.14503135,-2.7139607e-10,-2.424196e-10,0.007255843,0.0004242737,-0.0109820245,0.3,0.9230769230769231,0.7,0.5038167938931297,131,26.52570017,154.26415361943447,147.34709132407164,0.5549959406184234,0.5698435221781849,337.73351394160244,320.52830723886893,6,131 +435.0,0.0,0.0,0.0,0.0,0.8542263021689482,0.0,0.0,0.0,0.0,0.3155056175878613,0.0,0.23637433875524377,0.0,0.9816446022192629,2.4929616451263428,1.2110944986343384,1,1,2,0,4,0.012320098,-0.047314752,0.0043242383,-0.023875445,-0.08693376,-0.023431385,-5.131737e-11,-0.0697201,-0.060802516,0.061024904,0.059572045,0.07097988,0.026446642,0.0010062989,0.08025928,0.020688498,-0.12336956,2.4939806e-10,-3.0473463e-10,-0.06623738,0.00093623967,-0.11133711,0.2846153846153846,0.9375,0.7153846153846154,0.48854961832061067,131,21.33333333,165.97226660040235,166.22152587607494,0.5307405765162735,0.5302358852864497,361.1497399035382,343.9445332008047,6,131 +326.0,0.0,0.0,0.0,0.0,0.5252199283079518,0.0,0.37319936051366714,0.0,0.0,0.2524368772999597,0.0,0.5006839884927339,0.0,0.9985704076290131,2.307819366455078,1.5465818643569946,1,1,2,1,5,-0.121666186,0.002294504,-0.050703354,0.011810886,-0.07527892,-0.086173356,4.4068713e-10,-0.049318217,-0.008059416,-0.010366376,-0.027728498,0.06749162,0.0018696713,6.9900765e-05,-0.029930396,-0.106877916,-0.12313461,1.2809848e-09,7.3172296e-10,-0.032450534,6.4450964e-05,0.04543899,0.19230769230769232,0.9857142857142858,0.8076923076923077,0.5419847328244275,131,27.0,124.95742955501407,135.24152236891882,0.6206817836755574,0.5967905786418242,283.98760026321725,263.91485911002815,7,131 +179.0,0.0,0.0,0.0,0.0,0.0,0.0,0.591685807924207,0.0,0.0,0.24832266085721974,0.0,0.4780568419893583,0.0,0.9871213140090305,6.838628768920898,0.0,1,1,1,1,4,-0.04401085,0.11375445,-0.0061452384,0.045467235,0.14812993,0.030290183,1.2053566e-09,0.100299194,0.08642852,-0.1689336,-0.15665993,-0.11876293,-0.12798823,0.0016896459,-0.06335267,-0.10410187,0.24042982,2.6286903e-10,1.2787121e-09,-0.1882065,-0.0004899176,0.3120655,0.33076923076923076,1.0,0.6692307692307692,0.5038167938931297,131,9.782340862,323.3297032886123,302.55960120111513,0.2911016276177522,0.315118147776498,670.9970788295025,656.6594065772246,5,131 +137.0,0.0,0.0,0.0,0.0,0.8875627909177398,0.0,0.31070589058982157,0.0,0.0,0.31467795421845934,0.0,0.18204275188492272,0.0,0.9646376047531756,6.8818769454956055,4.6312642097473145,1,1,2,1,5,0.038805444,0.0100523755,0.016616272,0.00600656,0.13207546,0.13231537,-9.0430935e-10,-0.062946655,-0.0913392,-0.011226683,-0.018696835,-0.104190595,-0.0023542515,0.00016085568,-0.057100628,0.042089086,0.20450985,3.086809e-09,1.6701651e-09,0.27820712,0.00014840285,-0.019024724,0.13953488372093023,1.0,0.8604651162790697,0.6,130,16.183436,88.53628118909566,127.9354945262453,0.7113973401146504,0.6113659308026808,211.091249208723,191.07256237819132,7,130 +191.0,0.0,0.0,-0.014190088713312399,0.0,0.0,0.0,0.28722092198043425,0.0,0.8602501245852966,0.11898205678103953,0.0,0.7924451867009811,0.6837252088576498,0.9098240196704862,2.5475008487701416,0.20117127895355225,1,2,1,3,7,0.034905147,-0.011432473,0.011932418,0.01846388,-0.07041987,-0.06423885,2.2594622e-09,0.065533444,0.0802331,0.004054561,-0.04479176,0.06777733,0.010326085,8.879112e-05,-0.055352233,-0.03444552,-0.10369254,1.3395314e-08,-2.9280592e-10,-0.16794652,7.691482e-05,0.09632383,0.5,0.7868852459016393,0.5,0.46564885496183206,131,14.55167693,203.27815206682408,193.5619009948407,0.4603027704360082,0.47769354007147946,450.3641141877484,424.55630413364815,9,131 +305.0,0.0,0.0,0.0,0.0,0.9206124279057045,0.0,0.0,0.0,0.0,0.7321998552733835,0.0,0.18875299088203965,0.0,0.8776464265584942,3.075347900390625,6.270719051361084,1,1,2,0,4,0.0060035945,-0.045969393,0.08211652,-0.02573888,-0.05892522,-0.02165767,-8.641329e-09,0.065092236,0.057300128,0.058941606,0.05538107,0.029978726,0.025165753,-0.0011674459,0.07447953,-0.0033259061,-0.076748624,1.0729109e-08,4.080599e-09,0.44331625,-0.0011715865,-0.12963517,0.12307692307692308,0.9864864864864865,0.8769230769230769,0.5648854961832062,131,28.0,108.5659306377951,118.09059987955986,0.6607539277987206,0.6371644582874284,246.33706797832372,229.1318612755902,6,131 +80.0,0.0,0.0,0.0,0.0,0.9489630934695038,0.0,0.5671258857972099,0.0,0.0,-0.04018959395253129,0.0,0.12791012238949023,0.5435650183737514,0.9898719811439513,0.21716833114624023,1.396169662475586,1,2,2,1,6,-0.03425114,-0.02340081,-0.01430114,0.031274464,-0.18423344,-0.17582417,6.5422257e-10,-0.013172975,0.005142312,0.024446974,-0.046679493,0.15607405,0.013633318,0.00049288827,-0.08036644,-0.0639876,-0.26474443,-1.0309287e-09,1.7109024e-10,-0.047598504,0.0004595803,0.07388718,0.4076923076923077,0.7101449275362319,0.5923076923076923,0.5267175572519084,131,16.66803559,172.34800681671186,164.3683610573883,0.5179809466588012,0.5339996172900018,383.63628923706835,360.6960136334237,8,131 +181.0,0.0,0.0,0.0,0.0,0.5444085046630351,0.0,0.0,0.0,0.0,0.8888632306287121,0.0,0.0,0.0,0.8888261522849404,5.215022087097168,5.572999000549316,1,1,1,0,3,0.021653939,-0.1482958,0.004191244,-0.019870302,-0.032289103,0.19521359,-1.4216125e-09,-0.0336591,0.011218938,0.18709746,0.048648026,-0.043500196,0.085908465,0.0029439582,-0.006391616,0.4226782,0.058314443,1.2612802e-09,4.255493e-12,0.37304902,0.0027421913,-0.20798561,0.36923076923076925,0.8875,0.6307692307692307,0.6183206106870229,131,12.99110198,221.5551094624096,249.89851512000806,0.4292867412587084,0.38526990960635793,467.4478911770971,453.1102189248192,5,131 +207.0,0.0,0.0,0.0,0.0,0.9691417452563849,0.0,0.27090082017616995,0.0,0.0,0.2507514893310924,0.0,0.0,0.0,0.9982456622521083,7.411931037902832,2.44435453414917,1,1,1,1,4,-0.10288436,0.013614415,-0.04397919,0.0055210358,0.1526421,0.14716992,7.274772e-10,-0.12239564,-0.104052074,-0.01504971,-0.01062179,-0.12904756,-0.008543147,-0.0003632157,-0.020070573,0.20233627,0.24844551,-6.0507176e-11,-6.794585e-10,0.057963938,-0.00034054887,0.012015736,0.25384615384615383,1.0,0.7461538461538462,0.5877862595419847,131,8.325804244,212.78668346036812,215.10173617185725,0.4438969163134407,0.43999188605570333,454.77857362346975,437.57336692073625,6,131 +342.0,0.0,0.0,0.0,0.0,0.5592097893824239,0.0,0.0,0.0,0.0,0.677995175521908,0.0,0.5023341478856251,0.0,0.9971059884627658,4.060964584350586,0.5903205871582031,1,1,2,0,4,-0.12779248,0.008584233,-0.053025488,-0.024968192,0.010457629,-0.0043818573,1.7513259e-10,0.057116084,0.123353526,-0.012802677,0.062034946,0.00677643,-0.0040542744,-5.6958863e-05,0.08390186,-0.10621625,0.001999501,1.2226472e-09,7.5755335e-10,-0.12875538,-5.371281e-05,-0.08836282,0.46923076923076923,0.8970588235294118,0.5307692307692308,0.5267175572519084,131,26.0,250.06073770077455,246.4087442573543,0.38503143581202687,0.39043593178481156,529.3266821042826,512.1214754015491,6,131 +430.0,0.0,0.751877179785975,0.0,0.0,0.9769725477798566,0.0,0.0,0.0,0.6894273597162438,0.1664246617592125,0.0,0.0,0.0,0.9927465915679926,3.1883890628814697,0.2362910509109497,1,2,1,1,5,-0.10076619,0.00411079,-0.041348007,-0.010345327,-0.06761767,-0.02548714,-2.3358053e-11,0.06793351,0.13336784,-0.012943057,0.025968509,0.039213553,-0.0007172305,0.00019872087,0.035112865,0.287961,-0.047703464,4.5318574e-10,2.8379856e-09,-0.16440961,0.00018265822,-0.03219873,0.4,0.9117647058823529,0.6,0.5267175572519084,131,20.33333333,205.87310628262594,190.9236215411901,0.4557662480524805,0.4825281042483125,445.818953718441,425.7462125652519,7,131 +71.0,0.0,0.0,0.0,0.0,1.0879115442918066,0.0,0.0,0.0,0.0,0.689857835953052,0.0,0.0,0.0,0.8914975249767301,2.9609837532043457,2.3878674507141113,1,1,1,0,3,0.026872909,-0.033150565,0.014562985,-0.029555794,-0.07378281,-0.020087192,5.1221744e-10,0.06872452,0.08740704,0.04127434,0.07277922,0.040058166,0.019488093,0.0007259854,0.09635323,0.20330706,-0.07996373,8.154914e-10,1.9012578e-09,0.05227516,0.0006753369,-0.12821293,0.25384615384615383,0.9436619718309859,0.7461538461538462,0.5419847328244275,131,17.19917864,146.6408359215474,152.03739227410625,0.5713816824419263,0.5597330024104866,317.6193440953727,303.2816718430948,5,131 +174.0,0.0,0.0,0.0,0.0,1.054664413659701,0.0,-0.06019031337424557,0.0,1.0408430866949672,0.22495801325847734,0.0,0.0,0.6241881826501782,0.9936055554946248,3.2105188369750977,3.569272041320801,1,2,1,2,6,-0.09126752,0.016821645,-0.037427135,0.0029275075,-0.04640535,-0.054417025,-2.6895455e-10,0.050493717,0.075629175,0.016384264,-0.0012440338,0.01783398,0.015518173,0.00079609256,-0.06675241,0.08513969,-0.051669385,8.692815e-09,2.1361597e-10,0.17125411,0.0006228508,-0.046200443,0.19230769230769232,0.96,0.8076923076923077,0.5801526717557252,131,16.78028747,97.69387944655779,111.3976980136643,0.6887496666776137,0.6536507748940367,234.32803449676024,211.38775889311557,8,131 +468.0,0.0,0.0,0.0,0.0,0.8878345899711287,0.0,0.0,0.0,0.0,0.0,0.0,0.11158899347298527,0.0,0.9980062898000077,3.740825653076172,0.7444031238555908,1,0,2,0,3,-0.09911386,0.016190428,-0.04186918,-0.012865629,-0.00947221,-0.016060939,3.551754e-10,-0.08196234,-0.05695611,-0.02277931,0.031967778,0.013541176,-0.008228415,-0.00015996375,0.04315874,-0.055428464,-0.022089854,1.5477916e-09,1.1927956e-09,-0.11323776,-0.000148671,-0.03729548,0.21705426356589147,1.0,0.7829457364341085,0.5538461538461539,130,21.83333333,162.40778836462226,150.61440243158984,0.5354512980776523,0.5602981853102889,349.1146387510529,334.8155767292445,5,130 +169.0,0.0,0.0,0.0,0.0,0.639250664550686,0.0,0.0,0.0,0.0,0.23916620292691484,0.0,0.39456838751163803,0.0,0.9570751839876169,3.449317455291748,1.6425083875656128,1,1,2,0,4,0.035649255,0.004362768,0.01769301,-0.018141968,-0.026240915,-0.019290052,-6.6390143e-10,-0.009204094,-0.020523615,-0.007892293,0.045117013,0.025374081,-0.00060132967,0.000107098895,0.060747813,-0.049772054,-0.046499234,1.3849364e-09,-1.8085166e-09,-0.022789793,0.000103072605,-0.06201643,0.12307692307692308,1.0,0.8769230769230769,0.6030534351145038,131,16.21355236,96.911571204077,100.30491362070154,0.6908092841133927,0.6819198283699512,223.02834911088752,205.823142408154,6,131 +36.0,0.0,0.0,0.0,0.0,0.0,0.0,0.3315145809269318,0.0,0.8379609093259055,0.0,0.0,0.7393819707104313,0.0,0.9325002541144686,5.253031253814697,4.21114444732666,1,0,1,2,4,0.12054167,0.06510812,0.04961978,0.024714792,0.07634494,0.008450906,-6.2555294e-10,-0.2190645,-0.33213106,-0.0845941,-0.059214335,-0.051391907,-0.035483282,-0.0013076811,-0.10266406,-0.09901291,0.099016204,3.3575281e-10,-1.4656293e-09,0.23589692,-0.0012186703,0.06219261,0.09230769230769231,1.0,0.9076923076923077,0.5801526717557252,131,15.18138261,99.58557271370057,85.30094451720818,0.6837946636452484,0.722111208099685,228.37635213013465,211.17114542740114,6,131 +140.0,0.0,0.0,0.0,0.0,0.6104038481136194,0.0,0.0,0.0,0.0,0.2496978106868008,0.0,0.400616747491958,0.0,0.9967447618643439,3.202206611633301,0.0,1,1,2,0,4,-0.092260726,0.00934533,-0.037934873,-0.036536247,-0.03842082,-0.021325888,-8.49692e-09,0.020137127,0.057795376,-0.04515431,0.092041984,0.04441761,-0.005705123,-0.00016556197,0.12429183,-0.08064369,-0.06453469,4.9823408e-09,-1.7529277e-09,-0.18820684,-1.891837e-05,-0.06685015,0.36923076923076925,0.9295774647887324,0.6307692307692307,0.549618320610687,131,10.85284052,189.2925674199378,196.32763655684232,0.4855414032184066,0.4726774134778046,402.9228070921535,388.5851348398756,5,131 +461.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.6249999730882038,0.0,0.9583066726056841,0.0,0.8907814852396645,3.720369815826416,1.9265772104263306,1,1,1,0,3,0.075527325,-0.05927506,0.03144232,-0.018955078,-0.019235693,0.036512848,1.8339228e-09,-0.010409052,-0.011598777,0.074871965,0.045057524,0.022705298,0.033970192,0.0011657868,0.061645154,-0.12953041,-0.045123734,-2.5522464e-09,-2.4842652e-09,0.005818714,0.0010876075,-0.095617734,0.24615384615384617,0.9571428571428572,0.7538461538461538,0.5419847328244275,131,20.66666667,153.53434031615072,155.2990116325456,0.556544063055974,0.5528081192103902,331.40635288457935,317.06868063230144,5,131 +215.0,0.0,0.0,0.0,0.0,1.016201177420865,0.0,0.0,0.0,0.0,0.4429184946926142,0.0,0.0,0.0,0.77836583306392,4.253700256347656,0.9733085632324219,1,1,1,0,3,0.10201158,-0.010981176,0.043817908,-0.004876822,-0.003984887,0.027633132,5.7001437e-10,0.024795655,-0.01015132,0.01301163,0.012189027,-0.0041505215,0.0070896666,0.00029151083,0.01629404,0.1545214,0.015688721,-1.7940746e-09,8.569934e-10,-0.09018475,0.00027010293,-0.01952403,0.19230769230769232,1.0,0.8076923076923077,0.5648854961832062,131,14.86379192,108.05022894197413,101.79034725656493,0.6620557884736893,0.6780645590152076,240.43813013622616,226.10045788394825,5,131 +322.0,0.0,0.4836019535449897,0.0,0.0,1.0569291874039364,0.0,0.0,0.0,0.0,0.44814377734237304,0.0,0.0,0.0,0.963183569113413,3.9475929737091064,0.9834735989570618,1,2,1,0,4,-0.04931191,-0.025099413,-0.014705695,-0.04368103,-0.015998531,0.017421022,-3.7577316e-11,0.057761494,0.113872156,0.03190986,0.109749615,0.009422414,0.014431483,0.00052387064,0.14806686,0.06958137,-0.009018701,-1.3894013e-09,4.5577833e-10,-0.08916103,0.0004887638,-0.17432554,0.5307692307692308,0.8059701492537313,0.46923076923076923,0.5114503816793893,131,25.0,252.96936943428784,238.19022514474096,0.380780591750449,0.4028773939350343,535.1439455713091,517.9387388685757,6,131 +37.0,0.0,0.0,0.0,0.0,1.09303138307072,0.0,-0.06063640872861122,0.0,1.1199386068199213,0.5446855358555166,0.0,0.02485314925462618,0.0,0.7625999119877812,8.17950439453125,6.5164031982421875,1,1,2,2,6,0.06621886,0.05457423,0.071139015,0.00346841,0.20094372,0.13965839,-8.1209217e-10,0.100605726,-0.0065515437,-0.05400138,-0.020063756,-0.16559413,-0.03164098,-0.0007954044,-0.09041688,0.10926667,0.31678864,2.3586266e-09,-1.5632567e-09,0.468059,-0.00075148087,-0.051297694,0.13846153846153847,1.0,0.8615384615384616,0.648854961832061,131,17.27583847,78.63618090272357,100.4207650726914,0.7407159244170227,0.6816183629563349,196.2126374090918,173.27236180544713,8,131 +182.0,0.0,0.0,0.0,0.0,0.7732802821081518,0.0,0.07301173953199586,0.0,1.0551086552923947,0.3020262878176361,0.0,0.3024091018431273,0.0,0.9652538875738775,3.60453462600708,3.5939297676086426,1,1,2,2,6,0.02173927,0.014131856,0.017373916,0.027148817,-0.015003289,-0.035426885,-4.3163494e-11,-0.010234227,-0.034187034,-0.0027165692,-0.04207735,0.009442417,-0.003408702,0.00020204864,-0.0953286,-0.049249347,-0.029223105,-1.1800204e-09,-2.319059e-09,0.17373739,0.00024327975,-0.0034459017,0.12307692307692308,0.9883720930232558,0.8769230769230769,0.6641221374045801,131,15.08008214,77.30403738549468,89.29816657583852,0.7444916981646384,0.7111778805504445,193.54835037463403,170.60807477098936,8,131 +328.0,0.0,0.0,0.0,0.0,0.7132432720341513,0.0,0.0,0.0,0.0,0.0,0.0,0.3224989274075841,0.0,0.994697533845901,1.2266640663146973,1.4860116243362427,1,0,2,0,3,-0.060552772,-0.022543784,-0.025216995,-0.0385078,-0.1344473,-0.12000126,6.7789807e-10,-0.0118274735,0.01683552,0.018619414,0.09679217,0.1083433,0.015942505,0.00043253254,0.13065849,-0.05149781,-0.20429534,-2.0608208e-09,-3.4947072e-09,-0.03855055,0.00040969424,-0.14580843,0.23076923076923078,0.90625,0.7692307692307693,0.4961832061068702,131,25.0,177.2273798516169,165.18394080264983,0.5084235692350637,0.5323399145772495,378.7924319555117,364.4547597032338,5,131 +201.0,0.0,0.0,0.0,0.0,0.7501112003927087,0.0,0.44432086477766314,0.0,0.0,0.2657036196913905,0.0,0.3173142599507019,0.0,0.9906769764423363,3.686774730682373,2.7372817993164062,1,1,2,1,5,-0.023122024,0.007449465,-0.009969026,0.02291415,-0.011345222,-0.024350379,-4.434385e-09,-0.045500383,-0.047919482,-0.0050326604,-0.046103716,0.009840322,-0.00074485387,0.00015093749,-0.08291808,-0.060448606,-0.025780492,1.580044e-08,4.3932937e-09,0.08746458,0.0001427858,0.03080166,0.18461538461538463,0.9868421052631579,0.8153846153846154,0.5877862595419847,131,14.15468857,128.79631070782557,140.28460409254356,0.6116537208751813,0.5854131625882113,291.66536256884024,271.59262141565114,7,131 +350.0,0.0,0.6220166198080986,0.0,0.0,0.0,0.0,0.0,0.0,0.7115826639558475,0.43128450583584155,0.0,0.9755739045344898,0.0,0.9536453419923777,4.338282585144043,1.0391864776611328,1,2,1,1,5,-0.11449261,0.047686473,-0.046447266,-0.015490967,0.026095431,-0.0010821249,3.0631238e-09,0.13743393,0.19290794,-0.047548667,0.0242047,-0.008586505,-0.028695265,-0.0006510225,0.05605575,-0.1423465,0.023291834,3.143298e-09,2.0739153e-10,-0.08355021,-0.0005601481,-0.01759985,0.49606299212598426,0.8787878787878788,0.5039370078740157,0.5234375,128,29.0,283.77938962876976,255.40486964334593,0.33004930033103896,0.36873565563990135,601.4680888627497,581.5587792575395,7,128 +108.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.07516012658961571,0.0,1.1662860394820216,0.47799968310821817,0.0,0.9616135425244751,0.0,0.9764867597818367,3.8002452850341797,0.0,1,1,1,2,5,0.017104877,-0.015188786,0.00678605,0.0074226134,-0.0024073885,0.0022887823,-1.0326958e-10,-0.020150442,-0.022969242,0.019491049,-0.018436007,0.026477486,0.008553805,0.00032575513,-0.024136394,-0.14030157,-0.022380589,-6.5180783e-10,1.4998747e-10,-0.18820716,0.00030275687,0.02101008,0.5116279069767442,0.84375,0.4883720930232558,0.49230769230769234,130,9.253935661,243.11196265130286,263.0330341467105,0.39256780299391436,0.36361287193323794,515.3827997287758,498.2239253026057,6,130 +114.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0198108607838691,0.0,1.1997480855173626,0.33232908663542376,0.0,0.9731219105919197,0.0,0.9976790187756215,3.433107376098633,1.7780952453613281,1,1,1,2,5,-0.06613407,-0.026940763,-0.027928358,0.015455939,-0.020373022,-0.00415358,9.821484e-11,-0.10616815,-0.08465569,0.03475647,-0.038627464,0.032474138,0.015042509,0.00056814787,-0.048343718,-0.18387277,-0.05811549,-9.387828e-10,1.6213753e-10,-0.009134871,0.00052735506,0.04660694,0.27692307692307694,0.9577464788732394,0.7230769230769231,0.549618320610687,131,15.74811773,198.39206734074014,186.85112927557026,0.46896758358910373,0.4900870507112529,430.8568758346694,410.7841346814803,7,131 +31.0,0.0,0.21302837297645574,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.6568823488538391,0.0,0.9878845636274992,0.0,0.9815818351507185,4.416173458099365,0.40388381481170654,1,2,1,0,4,-0.059072874,0.016486248,-0.022930434,-0.030336682,0.02541288,0.03515246,1.4265442e-09,0.06350623,0.15345116,-0.035032757,0.07365851,0.002106023,-0.013628274,-7.5144344e-05,0.10470818,-0.15157667,0.019176135,-7.478825e-09,-5.2680993e-09,-0.14753139,-6.585341e-05,-0.08914689,0.5225806451612903,0.8214285714285714,0.4774193548387097,0.5448717948717948,156,9.232032854,358.85380672261095,361.85472176970825,0.3165821677194122,0.313551776921166,747.9681641467374,729.7076134452219,6,156 +304.0,0.0,0.0,0.0,0.0,0.8553929723556327,0.0,0.43671084516666153,0.0,0.0,0.0,0.0,0.20665623490552482,0.0,0.861898128489653,5.329559326171875,4.641007423400879,1,0,2,1,4,0.10955245,0.0321503,0.04536563,0.022320362,0.068587914,0.041313857,-9.493202e-10,-0.06929756,-0.13751343,-0.038442906,-0.0560393,-0.050995883,-0.015853418,-0.00033097653,-0.09494192,-0.04405711,0.096256584,6.6214456e-10,1.2712892e-09,0.27918833,-0.00030905916,0.031308524,0.09302325581395349,1.0,0.9069767441860465,0.6076923076923076,130,27.0,60.54406855964423,68.99615514096601,0.7922630550079606,0.7669222686038631,150.2470115454585,133.08813711928846,6,130 +130.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.1947552795443803,0.0,1.1229833437742287,0.46509638129668085,0.0,0.7804814326483753,0.0,0.8949553629755975,5.480170249938965,2.36669659614563,1,1,1,2,5,0.078129925,0.08278752,0.038922057,-0.0111210095,0.06636148,0.105166025,-3.6004197e-09,-0.011861941,-0.011246063,0.029858239,-0.029521458,-0.045701623,0.010814883,0.00073111145,-0.012127552,-0.06349109,0.08503859,2.7288682e-09,-8.3540845e-09,0.050143033,0.0005506319,-0.023422133,0.2230769230769231,0.987012987012987,0.7769230769230769,0.5877862595419847,131,17.49486653,156.73845419853552,148.33926607025057,0.5497792885705104,0.5676896474928812,347.54964955026014,327.47690839707104,7,131 +102.0,0.0,0.0,0.0,0.0,0.388600907916338,0.0,0.0,0.0,0.0,0.5645146228397968,0.0,0.6503975538785731,0.0,0.9985093029340102,0.6272480487823486,1.0363023281097412,1,1,2,0,4,-0.15403627,-0.016513696,-0.06373877,-0.025268206,-0.16137756,-0.1559654,8.759173e-11,0.06146962,0.13880543,0.021138884,0.06186902,0.14487103,0.008355084,0.00032261023,0.08510657,-0.12777142,-0.23625912,6.262354e-10,-2.2754194e-09,-0.08384067,0.00029965668,-0.09610997,0.3225806451612903,0.7551020408163265,0.6774193548387096,0.392,125,8.687200548,168.03123317460177,166.9100963531858,0.5106223859485355,0.5129174384728775,364.98415574283376,348.06246634920353,6,125 +118.0,0.0,0.6658311582698093,0.0,0.0,0.9001029962824215,0.0,-0.08966070201847423,0.0,1.0861671330161764,0.21236396898371895,0.0,0.0,0.0,0.9967790927489599,7.512698173522949,2.107433557510376,1,2,1,2,6,-0.13922162,0.05985046,-0.0576622,-0.0013266277,0.14755356,0.14192763,3.0472345e-09,0.056369282,0.10859414,-0.059651986,0.003141507,-0.13679846,-0.03895722,-0.0007397083,-0.012144737,0.34008682,0.26589778,2.6801665e-09,-1.2562666e-09,0.024032712,-0.00070150045,0.009213174,0.3230769230769231,0.9767441860465116,0.676923076923077,0.6564885496183206,131,9.401779603,329.63799315523636,319.5547619140392,0.2841763510254115,0.29532623161221866,698.2162619141174,675.2759863104727,8,131 +329.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5108505763537111,0.0,0.9051731468178343,0.0,0.9982422105471289,4.21683406829834,2.4838101863861084,1,1,1,0,3,-0.11464299,-0.024540197,-0.04786493,0.0012060569,0.013490063,0.022711564,-4.683082e-10,-0.051021654,-0.0033972212,0.033839803,-0.0072883037,-0.0042934623,0.01462946,0.0005525092,0.002592265,-0.12776136,0.0017229213,1.7794971e-09,-1.2612205e-09,0.06193752,0.0005161627,-0.023013664,0.3076923076923077,0.9705882352941176,0.6923076923076923,0.5267175572519084,131,30.0,216.57296158217224,195.138002704242,0.43752809540234194,0.4748285264646515,457.4835954166224,443.1459231643445,5,131 +334.0,0.0,0.0,0.0,0.0,0.0,0.0,0.15409314108339522,0.0,1.016730491635434,0.5631973678152696,0.0,0.8098257640500868,0.0,0.955718411008517,2.054264545440674,0.38585782051086426,1,1,1,2,5,0.025592815,-0.033554666,0.011348143,0.017988497,-0.09502667,-0.06543502,8.871811e-10,0.013650115,0.019005328,0.041269694,-0.04265817,0.09987519,0.018888826,0.00063953415,-0.052795544,-0.101005405,-0.14406036,4.176205e-10,8.4314883e-10,-0.14934678,0.0005944922,0.056828562,0.47692307692307695,0.7619047619047619,0.5230769230769231,0.48854961832061067,131,27.0,192.06112537096485,187.42052231810237,0.4804376928713158,0.4890231226555973,418.1949918951188,398.1222507419297,7,131 +302.0,0.0,0.0,0.0,0.0,0.9427201226118797,0.0,0.0,0.0,0.0,0.3803759463455367,0.0,0.0,0.0,0.9973044715325033,3.4568209648132324,0.9269722700119019,1,1,1,0,3,-0.08736144,-0.05035289,-0.036972925,-0.034468643,-0.050491147,0.026074046,6.559493e-11,-0.09753294,-0.0434735,0.06441279,0.0864475,0.033368584,0.028524635,0.0010762389,0.11658581,0.14987542,-0.052347332,-8.774531e-10,-7.802489e-10,-0.09485127,0.001000264,-0.15401419,0.3769230769230769,0.9420289855072463,0.6230769230769231,0.5267175572519084,131,27.0,178.1417946257473,181.72545712758253,0.5066521964587076,0.49976933600683315,380.62126150377253,366.2835892514946,5,131 +454.0,0.0,0.5152316927070474,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.372509117721602,0.0,0.8744494115297373,0.0,0.9214161076148343,5.617227554321289,4.3069610595703125,1,2,1,0,4,-0.003923464,0.024691388,0.0049805986,-0.022145078,0.08411637,0.05666431,3.0260086e-09,0.11198211,0.074739076,-0.011613415,0.04885869,-0.067128785,-0.013629144,-8.251227e-05,0.052979004,-0.08617163,0.111705005,-3.7582732e-09,-8.322271e-09,0.24554662,-7.567618e-05,-0.09468868,0.13076923076923078,1.0,0.8692307692307693,0.5877862595419847,131,21.41666667,112.5315577414034,105.69307762482087,0.650828076941211,0.6680390205032435,254.26832218554028,237.0631154828068,6,131 +357.0,0.0,0.0,0.0,0.0,0.7812460252879148,0.0,0.38980165610469897,0.0,0.0,0.20623199889641938,0.0,0.26189442462952184,0.0,0.9980242808659869,6.508886337280273,3.7503137588500977,1,1,2,1,5,-0.08407373,0.030271892,-0.035914086,0.020490788,0.12918216,0.08805894,2.5087563e-09,-0.11942357,-0.121720396,-0.028627137,-0.048601724,-0.098043524,-0.017743427,-0.0003798482,-0.084530994,-0.04667784,0.18036698,3.9944908e-10,-2.0848401e-10,0.18948679,-0.0003567001,0.02112639,0.18461538461538463,1.0,0.8153846153846154,0.5648854961832062,131,26.58296244,146.3666054237047,159.99869704902383,0.5719800500535512,0.5429804030724587,326.8059520005985,306.7332108474094,7,131 +417.0,0.0,0.0,0.0,0.0,1.0447534931715732,0.0,0.41382345594168096,0.0,0.0,0.26713148283345456,0.0,0.01881431322684971,0.0,0.8826745755473775,4.162232398986816,3.1734256744384766,1,1,2,1,5,0.079680905,0.007749774,0.0503387,0.027282719,0.0031631181,0.00013779552,5.9066846e-10,-0.036985397,-0.08016282,-0.00022007646,-0.041088283,-0.013248116,-0.0060055405,-0.003545311,-0.07724219,0.049251158,0.009257759,-1.4596244e-09,-4.432814e-10,0.13138852,-0.0034138577,0.012559706,0.1076923076923077,1.0,0.8923076923076924,0.6106870229007634,131,19.0,82.24150689455438,82.30343787392303,0.7305929010456372,0.7304202255239243,198.55575494229782,178.48301378910875,7,131 +96.0,0.0,0.0,0.0,0.0,1.011732107334584,0.0,-0.1684582381524178,0.0,0.9932073268343504,0.5686024971630258,0.0,-0.018658087014500935,0.0,0.9958228141069406,3.6517844200134277,1.5194193124771118,1,1,2,2,6,-0.092962295,-0.036479037,-0.038440995,-0.0021202303,-0.04491982,0.02057717,2.2110323e-10,-0.01414218,0.044361733,0.045359444,0.0050522,0.020085532,0.021944195,0.0008405437,0.00087898935,0.22559263,-0.030482538,-2.5725073e-09,-3.890363e-09,-0.03518606,0.0007845356,-0.02007951,0.3643410852713178,0.9342105263157895,0.6356589147286822,0.5923076923076923,130,14.88021903,182.7417326311285,184.4058700223535,0.4951706552183177,0.49201142252759744,404.3619644971504,381.483465262257,8,130 +27.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.19100744253382332,0.0,0.9363223884454224,0.6032179121588381,0.0,0.89540515658135,0.0,0.9834330105781549,3.7403225898742676,2.287193536758423,1,1,1,2,5,0.003210349,-0.079490066,0.0008559465,-0.0031620427,-0.02251185,0.05381855,1.3298911e-09,-0.0649477,-0.028518112,0.10065609,0.0013875192,0.024411151,0.045294024,0.0015542194,0.0036057085,-0.11859511,-0.04937125,3.1146885e-09,-2.4814395e-09,0.042136293,0.0014475632,-0.047244217,0.3,0.9615384615384616,0.7,0.6030534351145038,131,9.801505818,164.75279535082143,164.13201571134556,0.5332166507664503,0.5344815457882902,363.57833185483196,343.50559070164286,7,131 +20.0,0.0,0.0,0.0,0.0,1.1253288742517418,0.0,0.0,0.0,0.0,0.5640132118228286,0.0,-0.0993647600623163,0.0,0.774056852956613,5.607357025146484,5.096277236938477,1,1,2,0,4,0.06684454,0.0041481284,0.08917604,0.00071145117,0.05101001,0.1149091,7.934188e-09,0.05691078,-0.039039258,0.025882553,-0.007130402,-0.055849794,-0.005551252,0.0009405272,-0.0662027,0.2127905,0.10309609,-1.0419923e-08,5.1851394e-09,0.32503843,0.0008936087,-0.094965994,0.15483870967741936,0.989247311827957,0.8451612903225807,0.6025641025641025,156,14.54346338,120.51187619546721,141.411524469864,0.6795965175600254,0.6355642667532296,271.2843030924499,253.02375239093442,6,156 +335.0,0.0,0.0,0.0,0.0,0.8695969464959883,0.0,0.0,0.0,0.5813479746553643,0.29007011323070836,0.0,0.20402332556533742,0.0,0.9554497371117265,5.017626762390137,3.831352472305298,1,1,2,1,5,0.08904689,-0.08492255,0.027769746,-0.004670837,0.024414718,0.12769344,5.8891647e-10,-0.18227416,-0.1802967,0.10836491,0.01138617,-0.022864755,0.047956713,0.0018310862,0.015112968,0.05807379,0.04203615,-2.6863045e-09,-8.14902e-10,0.19764818,0.0017033933,-0.05824963,0.16923076923076924,1.0,0.8307692307692308,0.549618320610687,131,25.0,108.56119452974313,136.47634867417878,0.6607658721891125,0.5939844762761366,251.19513021267534,231.12238905948627,7,131 +101.0,0.0,0.4217811206392565,0.0,0.0,0.0,0.0,0.0,0.0,0.355472427849384,0.4203203195143768,0.0,0.9933782369829712,0.0,0.9893038423856095,1.4636166095733643,0.8442857265472412,1,2,1,1,5,-0.08977889,-0.004081818,-0.03650769,-0.021866279,-0.110896885,-0.12564404,1.3348897e-10,0.09618699,0.14690848,0.0055375914,0.054155804,0.11376271,0.0016807509,7.964957e-05,0.07321563,-0.17330861,-0.17872624,-6.072005e-11,-5.5539157e-11,-0.10317861,7.302368e-05,-0.07945777,0.3828125,0.8,0.6171875,0.3488372093023256,129,8.306639288,177.27261996999434,180.72222825399533,0.503031152108801,0.49635010077094466,388.509451787426,368.5452399399887,7,129 +113.0,0.0,0.0,0.0,0.0,0.0,0.0,0.04143679768168081,0.0,1.06976633086778,0.24144089767417157,0.0,0.9116800962636862,0.5753705564377184,0.9905066903432205,3.801636219024658,1.2815626859664917,1,2,1,2,6,-0.08029056,0.02845837,-0.032430213,0.009387658,0.0035976914,-0.041022103,6.5483e-10,0.080469705,0.10112412,-0.034608264,-0.023102488,0.0069710785,-0.016291376,-0.00059595867,-0.024927355,-0.1267238,-0.010182495,3.8217753e-09,3.801881e-09,-0.05914055,-0.00055811944,0.049658936,0.38461538461538464,0.9295774647887324,0.6153846153846154,0.5419847328244275,131,15.74811773,214.48303982437312,215.0481354405448,0.4410321266767391,0.4400819100994406,467.9063552523909,444.96607964874624,8,131 +464.0,0.0,0.0,0.0,0.0,0.47765035366253755,0.0,0.4302428370889862,0.0,0.0,0.5145349162677457,0.0,0.5804698532325733,0.0,0.9664563332001365,5.3517560958862305,1.5293421745300293,1,1,2,1,5,0.025164407,-0.015403203,0.01191764,0.0029903445,0.06631647,0.078186184,-8.5339275e-10,-0.01943027,-0.02322343,0.018615166,-0.0073929704,-0.042478517,0.009919242,0.00041103645,-0.005025701,-0.0937549,0.08353274,3.3668035e-09,-2.1608584e-09,-0.034186736,0.00038234316,0.005512474,0.38461538461538464,0.9861111111111112,0.6153846153846154,0.5572519083969466,131,18.75,254.35191743104428,243.55556054343342,0.3787765425944717,0.3947110202541626,542.7765760152777,522.7038348620886,7,131 +121.0,0.0,0.0,0.0,0.0,0.0,0.0,0.9227323596518374,0.0,0.0,0.44236310763303244,0.0,0.7452221421276526,0.0,0.9048992428183553,2.397475481033325,0.0,1,1,1,1,4,0.07413216,-0.0035173262,0.030781006,0.046342824,-0.0695821,-0.07405708,-1.9790962e-10,0.0075033954,-0.020579703,0.0046511833,-0.11607268,0.086273834,0.001877851,5.128484e-05,-0.15632698,-0.093173414,-0.11157985,-8.406732e-10,4.7603377e-10,-0.18820672,4.552282e-05,0.17833997,0.47692307692307695,0.7704918032786885,0.5230769230769231,0.4732824427480916,131,9.013004791,191.97516184276012,192.5141056898831,0.4805953527770107,0.4796077661730626,408.28799593779814,393.95032368552023,5,131 +103.0,0.0,0.0,0.0,0.0,0.0,0.0,0.3478613555630714,0.0,0.0,0.2641379134511468,0.0,0.4512132183710731,0.0,0.9986420633395509,4.166536331176758,4.112062454223633,1,1,1,1,4,-0.10512363,0.037632428,-0.044007223,0.044273917,0.02358359,-0.03091651,-1.0548507e-09,-0.08506204,-0.07568456,-0.048794504,-0.094212525,-0.017681738,-0.020068761,-0.00065189437,-0.1307541,-0.14148282,0.012677448,-1.9952476e-10,-9.98923e-10,0.2259184,-0.00060934987,0.11181819,0.24615384615384617,0.9876543209876543,0.7538461538461538,0.6259541984732825,131,10.38466804,164.00635923242098,170.3415686806604,0.5347379472274401,0.521962956025274,357.21792516757546,340.01271846484195,6,131 +317.0,0.0,0.0,0.0,0.0,0.9302737788659331,0.0,0.9723095575474447,0.0,0.0,-0.16260705468933215,0.0,0.0,0.49560197088683855,0.9972871746619534,3.739184856414795,0.6793256998062134,1,2,1,1,5,-0.11190195,0.05586509,-0.04639746,0.053753037,-0.0124004,-0.057777468,1.3025103e-09,-0.00043423646,0.006316607,-0.07271156,-0.13359524,0.006037268,-0.030847443,-0.0010329786,-0.17952196,0.12361972,0.0003735968,2.915397e-10,1.4095668e-09,-0.119791694,-0.0009647235,0.23106766,0.36153846153846153,0.9444444444444444,0.6384615384615384,0.5572519083969466,131,28.0,200.41845912660716,205.9308975097325,0.465354428982956,0.4556657274950807,434.9096594064034,414.8369182532143,7,131 +153.0,0.0,0.0,0.0,0.0,0.0,0.0,0.6279474446880176,0.0,0.0,0.35989489782614037,0.0,0.8860448833803342,0.0,0.9565039736032486,3.774057149887085,1.786949872970581,1,1,1,1,4,0.03577721,0.031240925,0.013181867,0.021967815,0.0010063669,-0.039700575,2.9453726e-09,0.025382312,-0.0152546605,-0.03811836,-0.049426388,0.007396376,-0.018441385,-0.0009586842,-0.05622816,-0.12946887,-0.013131187,2.280945e-10,-5.643628e-09,-0.008243121,-0.00090102025,0.078716174,0.18461538461538463,0.9761904761904762,0.8153846153846154,0.648854961832061,131,12.67351129,141.96622603603467,137.2360111822211,0.5816677767487206,0.5922647273946527,313.13765877480284,295.93245207206934,6,131 +177.0,0.0,0.0,0.0,0.0,0.9898444346844525,0.0,0.0,0.0,0.0,0.24051345833717389,0.0,0.0,0.0,0.9968583603700002,6.175866603851318,1.2561575174331665,1,1,1,0,3,-0.09610366,0.04254429,-0.040266924,-0.012972818,0.09655227,0.08733804,4.2609602e-10,-0.022836687,-0.0046827733,-0.050466094,0.03221873,-0.08098647,-0.024953885,-0.0005599653,0.04323927,0.12345637,0.16121526,2.491875e-09,1.1961798e-09,-0.0616991,-0.00052469596,-0.031782847,0.2230769230769231,1.0,0.7769230769230769,0.5725190839694656,131,13.60438056,181.061146678667,186.12379347378234,0.5010381270351979,0.4914494671075978,386.4599656096119,372.122293357334,5,131 +156.0,0.0,0.0,0.0,0.0,1.1299629452262303,0.0,-0.17764439809476448,0.0,0.7837190673202021,0.731488291236469,0.0,0.0,0.0,0.8186047638456025,4.639695644378662,2.4816179275512695,1,1,1,2,5,0.060312763,-0.03362928,0.03345081,-0.013535866,0.015671771,0.070543185,4.2395745e-09,0.038686555,0.033717025,0.04530167,0.0216609,-0.014865343,0.021640696,0.0008623938,0.012614472,0.054093003,0.029425845,1.098311e-09,4.4722657e-09,0.061716747,0.00080000056,-0.070903316,0.3178294573643411,0.9066666666666666,0.6821705426356589,0.5846153846153846,130,12.83778234,179.52227282923556,179.4797137605875,0.5013402432723324,0.5014223137346518,393.0632324890028,373.0445456584711,7,130 +90.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.7109526847317862,0.0,0.9954564109692967,0.0,0.9846315658092497,2.716623306274414,0.7111576795578003,1,1,1,0,3,-0.035213627,-0.0020829998,-0.013497332,-0.040223148,-0.05216188,-0.06456632,-5.331954e-10,0.08711922,0.12123455,0.0007897897,0.10168036,0.052902535,0.0012178044,4.6039106e-05,0.13727874,-0.17130724,-0.09768089,-7.6678297e-10,-1.5176407e-09,-0.1165859,4.3052372e-05,-0.15117979,0.3923076923076923,0.84,0.6076923076923076,0.5801526717557252,131,11.09924709,173.5133953904578,170.6679977211718,0.5156820591207963,0.521313040875268,371.3644630331935,357.0267907809156,5,131 +44.0,0.0,0.0,0.0,0.0,0.0,0.0,0.41741699363917967,0.0,0.0,0.4790336607291944,0.0,0.8211652781565985,0.0,0.978695506850878,5.431323528289795,1.4565104246139526,1,1,1,1,4,0.005969121,0.017235767,0.0039716614,0.0016825594,0.07408498,0.084293984,-3.5567325e-09,-0.014651134,0.012282779,-0.03080985,-0.012232664,-0.044059813,-0.0077774795,0.00021497681,0.006781792,-0.09536098,0.08586121,2.3687234e-09,9.95441e-09,-0.0415216,0.00019918075,0.016900266,0.36923076923076925,1.0,0.6307692307692307,0.5419847328244275,131,16.14236824,267.08004951109365,250.6271334701051,0.36081514989258995,0.38419996779111826,563.3653057249207,546.1600990221873,6,131 +48.0,0.0,0.0,0.0,0.0,0.0,0.0,-0.08419434821989356,0.0,1.0248000343818642,0.6971252295484509,0.0,0.9113706704725828,0.0,0.9938189975420629,3.6725361347198486,0.5524114370346069,1,1,1,2,5,-0.0965058,0.001244829,-0.039530646,-0.0010831525,-0.0073543657,-0.02076721,1.3029869e-09,0.040430352,0.0895056,-0.0024478382,0.003288933,0.022281295,-0.0010278636,-9.2098075e-05,0.012621998,-0.12688285,-0.02651259,-3.08307e-10,-2.5524978e-09,-0.1325732,-8.6897424e-05,0.0033412504,0.5076923076923077,0.8507462686567164,0.49230769230769234,0.5190839694656488,131,10.03696099,246.0748282418555,250.85267655361014,0.3909338551637657,0.38386937100424895,526.2223976369,506.149656483711,7,131 +122.0,0.0,0.0,0.0,0.0,0.8405326957821979,0.0,0.0,0.0,0.0,0.6415576499242048,0.0,0.2908487315242652,0.0,0.8327870427568749,6.171525001525879,2.2645506858825684,1,1,2,0,4,0.07027624,-0.014771044,0.04376967,-0.017728388,0.09564075,0.12251266,1.1237233e-09,0.036941066,0.007546573,0.02090954,0.03817035,-0.0751135,0.008662501,0.00044166253,0.048450906,0.010300764,0.14340514,7.324639e-10,4.5768328e-10,0.039855942,0.00041032364,-0.06990239,0.2692307692307692,0.972972972972973,0.7307692307692307,0.5725190839694656,131,10.98425736,181.18812133242812,174.57968808884033,0.5007953647102916,0.5135875911858274,391.58144936758976,374.37624266485625,6,131 +15.0,0.0,0.0,0.0,0.0,1.0805231522022778,0.0,-0.17171397027966107,0.0,0.748464937552763,0.7036878779580361,0.0,0.0,0.0,0.9485460513830181,6.888538360595703,1.8430272340774536,1,1,1,2,5,-0.0053302613,0.00039100365,0.0019246595,-0.014930052,0.13165297,0.14363523,-3.9337766e-10,0.040508322,0.048904195,0.0086069815,0.030481065,-0.10257655,-0.0025443581,2.1277447e-06,0.04058447,0.02098089,0.19991522,-2.2270332e-09,-5.6107816e-09,-0.0025955806,-1.6957492e-06,-0.047896747,0.461038961038961,0.9523809523809523,0.538961038961039,0.5483870967741935,155,9.590691307,436.1669504527386,409.8660146345487,0.24487922167322712,0.2665619953953042,907.5925691223727,886.3339009054772,7,155 +63.0,0.0,0.45588407993976937,0.0,0.0,0.0,0.0,0.0,0.0,0.4708484307406848,0.5780643337899529,0.0,0.9958283663952429,0.0,0.9691148751974102,2.707512855529785,0.9726208448410034,1,2,1,1,5,-0.13697043,0.0031136842,-0.05577937,-0.02235594,-0.04802832,-0.07736346,-1.088602e-09,0.11746803,0.18930854,-0.0065852655,0.05449494,0.06259143,-0.0016387447,-0.00010547091,0.07554787,-0.17471395,-0.089486696,-3.0573988e-10,-1.6254998e-09,-0.09025401,-9.930187e-05,-0.07815555,0.45384615384615384,0.8307692307692308,0.5461538461538461,0.4961832061068702,131,10.44490075,196.5235106299894,177.2099876363717,0.4723241667220361,0.508457320783368,427.1197624131679,407.0470212599788,7,131 +460.0,0.0,0.0,0.0,0.0,1.134070772707336,0.0,0.9947509222616958,0.0,0.0,-0.1170655871237022,0.0,0.0,0.5950493846929792,0.9974652594327924,5.883610725402832,0.21690714359283447,1,2,1,1,5,-0.12833232,0.08176258,-0.052769672,0.06357684,0.09081041,0.044446405,1.7868393e-09,0.060722057,0.08027449,-0.096292436,-0.1600711,-0.07215028,-0.051553823,-0.0012285635,-0.21607725,0.11260475,0.15132852,-4.768664e-09,-3.1233952e-10,-0.16636176,-0.0011586741,0.30247596,0.4153846153846154,0.9855072463768116,0.5846153846153846,0.5267175572519084,131,21.0,288.0943672662911,297.48758426871075,0.3330053171782017,0.3212779010846431,610.2614756857713,590.1887345325822,7,131 +16.0,0.0,0.0,0.0,0.0,1.0588904725101855,0.0,0.0,0.0,0.0,0.5907114131693856,0.0,0.0594484004679594,0.0,0.9463813008864725,8.222599029541016,0.0,1,1,2,0,4,0.007049782,0.046540078,0.0067729936,-0.035226274,0.19737923,0.17909549,-1.3362574e-09,0.07106158,0.074231245,-0.05571709,0.08839452,-0.1533336,-0.027261361,-0.000697534,0.11920471,0.08795704,0.3083032,-2.0114392e-09,-6.4248135e-11,-0.18820734,-0.00065616047,-0.1032236,0.5612903225806452,0.8375,0.43870967741935485,0.5192307692307693,156,8.862422998,602.6589421430033,554.890860607284,0.14491626682483008,0.16889191107750698,1230.5350098706028,1215.3178842860066,5,156 +200.0,0.0,0.0,0.0,0.0,0.6865542842842904,0.0,0.0,0.0,0.0,0.23670880471583589,0.0,0.35762097991507796,0.0,0.9978970871369041,5.383124828338623,0.0,1,1,2,0,4,-0.096101575,0.018146375,-0.040517032,-0.010025753,0.06934921,0.05950061,-8.728389e-10,-0.058780517,-0.03609734,-0.024184998,0.025302066,-0.043190543,-0.009488051,-0.00022430028,0.035114612,-0.046086058,0.09679388,-2.8157379e-09,-1.9539474e-09,-0.18820661,-0.00020941148,-0.027378784,0.2923076923076923,0.9879518072289156,0.7076923076923077,0.6412213740458015,131,11.77275838,229.06090691271743,233.78911872117982,0.41716298982559286,0.4097021361052142,482.45948607771277,468.12181382543486,5,131 +183.0,0.0,0.0,0.0,0.0,0.0,0.21010463260940399,0.28581128269005684,0.0,0.0,0.6766255619533882,0.0,0.852545163185181,0.0,0.5645857298725554,4.0757365226745605,1.1085766553878784,2,1,1,1,5,0.10346906,-0.038916394,0.04540514,-0.011606521,-0.0036543547,0.036144637,5.887363e-10,0.035819355,0.026123742,0.04728089,0.027021594,0.007643341,0.023605222,0.0007755046,0.04169938,-0.040143315,-0.00999669,-9.710903e-09,-1.6551079e-09,-0.076561935,0.00072097225,-0.05117113,0.35384615384615387,0.8513513513513513,0.6461538461538462,0.5648854961832062,131,12.07392197,186.72737497897037,169.93523950013827,0.49031859538464856,0.5227730832268113,407.52749111112985,387.45474995794075,7,131 +23.0,0.0,0.26464148694360506,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.6793189500591198,0.0,0.9952270656164407,0.0,0.9882966524362563,3.510241985321045,1.5541093349456787,1,2,1,0,4,-0.09917454,0.0119887935,-0.039563976,-0.04001715,-0.010722902,-0.041225247,-8.849673e-10,0.11686538,0.17277744,-0.016896853,0.10127445,0.022087177,-0.005977674,-0.00016863807,0.13671577,-0.16780022,-0.036340214,-1.7123277e-09,-1.659011e-09,-0.031692438,-0.00015724175,-0.14755501,0.38461538461538464,0.9142857142857143,0.6153846153846154,0.5343511450381679,131,11.20602327,203.56043161851974,199.64326979940944,0.45980710597360486,0.4667333296612175,436.326069939773,419.1208632370395,6,131 +432.0,0.0,0.0,0.0,0.0,1.0228298895267756,0.0,0.0,0.0,0.6675008643695295,0.5655672478934993,0.0,0.09675843195192244,0.0,0.8880060435334837,7.7007622718811035,6.764471530914307,1,1,2,1,5,-0.0017506657,0.0231341,0.098710746,-0.008570135,0.1853826,0.14792897,-2.0986983e-09,0.11765915,-0.046675604,-0.027506681,0.008009308,-0.13353513,-0.009724377,-0.00015108958,-0.035753235,0.05604094,0.26711276,1.2002676e-08,5.708559e-09,0.4930419,-0.00014451823,-0.07709843,0.11538461538461539,1.0,0.8846153846153846,0.6259541984732825,131,21.08333333,78.06872035270621,116.11947276460151,0.7423219648126993,0.6419761698971314,190.2101818586015,170.13744070541242,7,131 +33.0,0.0,0.0,0.0,0.0,0.0,0.0,0.1679827995483543,0.0,1.0097961283428223,0.445727426022989,0.0,0.7844533349201082,0.0,0.8973993192116416,3.5949742794036865,0.9699620604515076,1,1,1,2,5,0.06307269,0.012299361,0.029839,0.020490509,-0.016927695,-0.012925806,4.798714e-10,0.039794296,0.01821265,-0.025370758,-0.047085293,0.026160106,-0.0032349396,0.00022767509,-0.028815597,-0.08374677,-0.034432758,-3.681344e-10,-1.7058346e-09,-0.090521775,0.00022465365,0.08769813,0.34838709677419355,0.9195402298850575,0.6516129032258065,0.5576923076923077,156,12.80219028,208.7529776376844,186.31536232063604,0.5121795373455591,0.5503699322163805,452.8099310938035,431.5059552753688,7,156 +178.0,0.0,0.0,0.0,0.0,1.0914772448544667,0.0,0.43754862577055387,0.0,0.0,0.33441509629123206,0.0,0.0,0.0,0.9959966413180029,4.484971523284912,1.7158925533294678,1,1,1,1,4,-0.08112922,0.018530024,-0.033790804,0.01207381,0.018531352,0.02721981,-2.2059021e-09,-0.0144779775,0.012528565,-0.02114299,-0.02826761,-0.014683993,-0.008660114,3.259499e-05,-0.033795904,0.0180465,0.0302574,-7.976558e-09,-1.9024702e-09,-0.015399285,6.65505e-05,0.043486502,0.2923076923076923,0.9736842105263158,0.7076923076923077,0.5877862595419847,131,15.70704997,192.7074880127962,192.30017121039074,0.47925389806702295,0.4799995468593683,414.6201827283259,397.4149760255924,6,131 +171.0,0.0,0.0,0.0,0.0,1.096601827302365,0.0,0.5399380771203897,0.0,0.0,0.31233672331707124,0.0,0.0,0.0,0.9930329078435891,2.381223678588867,1.205634593963623,1,1,1,1,4,-0.049682766,-0.01321851,-0.019515349,0.02226687,-0.08411219,-0.06804877,1.4791286e-10,-0.022776857,-0.005029945,0.010797771,-0.044452522,0.0680771,0.010619501,-0.00029103534,-0.052926436,0.0149636045,-0.11692236,-5.051638e-09,-1.905726e-09,-0.06678726,-0.00033070866,0.070745036,0.3384615384615385,0.9,0.6615384615384615,0.5419847328244275,131,16.57768652,172.40767733324992,174.79375076589884,0.5178629898983431,0.5131681444888101,374.02056136923335,356.81535466649984,6,131 +167.0,0.0,0.8881505933248116,0.0,0.0,1.0521266561818514,0.0,0.0,0.0,0.9679666049986162,0.08881104297099614,0.0,0.0,0.0,0.7186012183129787,6.233743190765381,1.128271460533142,1,2,1,1,5,0.026991084,0.05550373,0.06634337,-0.0116622355,0.09525298,0.1043186,6.989832e-10,0.1699003,0.06809759,-0.051110007,-0.0063452083,-0.08169231,-0.0486387,0.0020422707,0.0060271127,0.18283246,0.16028832,8.722184e-09,5.607604e-09,-0.07457847,-0.00093063235,0.021988343,0.16153846153846155,1.0,0.8384615384615385,0.6564885496183206,131,14.32717317,92.0190207107338,98.28823866612925,0.7038305581068949,0.6871889768538992,218.11078257465667,198.0380414214676,7,131 +22.0,0.0,0.0,0.0,0.0,0.9503205265195662,0.0,0.5264260342090008,0.0,0.0,0.3179639379017329,0.0,0.1410280051386856,0.0,0.9714118850231166,1.8588802814483643,1.0753732919692993,1,1,2,1,5,0.008261154,-0.020681582,0.003348525,0.026581975,-0.10254955,-0.096383825,-6.0319116e-10,-0.0010910513,-0.0005474536,0.008157875,-0.0385127,0.08897075,0.02400221,0.0005514608,-0.035821766,-0.042981338,-0.15513124,3.6803263e-10,-1.0213417e-09,-0.07990584,0.0004844825,0.0715183,0.2903225806451613,0.8928571428571429,0.7096774193548387,0.5448717948717948,156,16.49007529,186.0095975097611,178.5951703524675,0.5509095676186831,0.5641582860711312,407.3231708379569,386.0191950195222,7,156 +143.0,0.0,0.0,0.0,0.0,0.7219973272016369,0.0,0.4279121066329663,0.0,0.0,0.0,0.0,0.29931672079529426,0.0,0.9928360259532926,2.2747068405151367,1.911636471748352,1,0,2,1,4,-0.022877788,0.07397577,-0.010813729,0.033298522,-0.064185046,-0.1427198,-2.7298247e-10,-0.101000205,-0.14358021,-0.09601441,-0.06455256,0.057305496,-0.041982785,-0.0015681848,-0.09162886,-0.08696333,-0.107027,1.9693909e-09,-1.7729632e-09,0.0043140315,-0.0014626872,0.10982311,0.26356589147286824,0.9545454545454546,0.7364341085271318,0.5153846153846153,130,11.35112936,124.17609660918515,139.96296530694883,0.6202700249930505,0.5837286191845305,277.51106764454033,260.3521932183703,6,130 +465.0,0.0,0.0,0.0,0.0,0.8983845399204743,0.0,0.0,0.0,0.0,0.3695497103658409,0.0,0.20336839652684358,0.0,0.9761273153622937,4.044502258300781,2.382223606109619,1,1,2,0,4,0.016041633,-0.03197074,0.0064114253,-0.024289975,-0.0100110285,0.031391256,2.4618982e-10,-0.045912977,-0.04162044,0.0407895,0.06159835,0.003468493,0.018133305,0.00067739084,0.08314834,0.044216227,-0.009717222,-2.8824187e-10,1.5142133e-10,0.051706742,0.0006294145,-0.10920752,0.18461538461538463,1.0,0.8153846153846154,0.5801526717557252,131,22.33333333,129.78324585683328,131.27970121455576,0.609353999479233,0.6058834962016663,288.77169841640006,271.56649171366655,6,131 +409.0,0.0,0.0,0.0,0.0,0.9164641304283428,0.0,0.09863969158103375,0.0,1.0382081828020557,0.3158181144678373,0.0,0.0,0.0,0.996725792487462,4.896910190582275,1.3779906034469604,1,1,1,2,5,-0.10414982,0.036648694,-0.043202527,0.0096264575,0.023467237,0.037369914,-3.3067822e-09,-2.8337708e-05,0.029674122,-0.043835465,-0.027758028,-0.035042644,-0.021826109,-0.00032520617,-0.044926085,0.26598397,0.07188812,1.522111e-09,6.3827414e-09,-0.049429316,-0.0003076429,0.05718659,0.24615384615384617,1.0,0.7538461538461538,0.5801526717557252,131,18.0,158.43467715898618,161.6901733659874,0.5462314411065949,0.5394862040832332,350.94209547116145,330.86935431797235,7,131 +313.0,0.0,0.0,0.0,0.0,0.8647713833226132,0.0,0.6028853722904063,0.0,0.0,0.29277520523372297,0.0,0.23304617605341427,0.0,0.9783305517832438,5.541450500488281,1.7126585245132446,1,1,2,1,5,0.008749963,0.03121051,0.0031509567,0.02321752,0.077029206,0.05921443,4.1547757e-10,-0.028717015,-0.056949448,-0.035491336,-0.053926695,-0.055990815,-0.017535824,-0.00030829225,-0.062347297,-0.020295614,0.10907058,-3.823177e-09,-2.6218545e-09,-0.015724992,-0.00029037608,0.090546146,0.3076923076923077,1.0,0.6923076923076923,0.5801526717557252,131,29.0,256.906711589028,240.44325651868564,0.3751009955156865,0.3994277612121004,547.8861643312451,527.813423178056,7,131 +198.0,0.0,0.0,0.0,0.0,0.914386905815912,0.0,0.0,0.0,0.6472138265166186,0.3241888926081036,0.0,0.14213303233197758,0.0,0.9954069850842151,2.6424877643585205,1.5336681604385376,1,1,2,1,5,-0.0713079,-0.017990617,-0.02971096,-0.0062036146,-0.07324059,-0.047348797,1.0280779e-10,-0.016879102,0.009267216,0.016469141,0.014994259,0.057182975,0.0131549975,0.00047254283,0.019957436,0.022450177,-0.102925494,-3.3723806e-09,-1.5689365e-09,-0.033751063,0.00044246772,-0.026288105,0.2,0.975,0.8,0.6106870229007634,131,13.85626283,108.49871550017625,114.45319722290907,0.6609234635377648,0.6460720401160709,251.07017215354156,230.9974310003525,7,131 +332.0,0.0,0.0,0.0,0.0,0.8323693294674798,0.0,0.0,0.0,0.0,0.40128916706329226,0.0,0.2619763525520746,0.0,0.9489836357037224,5.266386032104492,1.917788028717041,1,1,2,0,4,0.029877214,0.010879013,0.022269081,-0.0066209347,0.05882975,0.0559727,1.1294077e-09,0.02079811,-0.0053244946,-0.013107038,0.014930812,-0.04438545,-0.0046651387,-3.5856094e-05,0.019595835,-0.0046379557,0.08790998,-1.3829456e-09,8.0043605e-10,0.0049335603,-3.4607034e-05,-0.020202171,0.17692307692307693,0.9873417721518988,0.823076923076923,0.6106870229007634,131,29.0,133.05290997461114,135.5881797068584,0.6017967385729659,0.596001475477943,295.3110266519558,278.1058199492223,6,131 +217.0,0.0,0.0,0.0,0.0,1.0449432503234666,0.0,0.0,0.0,0.0,0.544171099280035,0.0,0.0807375132868462,0.0,0.8868180641531941,4.956539630889893,1.4777189493179321,1,1,2,0,4,0.06868122,-0.03188813,0.03209494,-0.011047604,0.03071202,0.07529906,2.7147953e-10,0.004396084,-0.009083027,0.039665226,0.027380772,-0.028024621,0.018935027,0.0007447795,0.03693011,0.09468078,0.05715009,1.5774439e-10,4.4395185e-10,-0.039385695,0.0006925197,-0.055408407,0.3046875,0.9459459459459459,0.6953125,0.5736434108527132,129,9.481177276,161.72898120782267,154.66179847384734,0.5342686288067391,0.5491056939369946,352.57014399916307,335.45796241564534,6,129 +166.0,0.0,0.0,0.0,0.0,0.9954923422163215,0.0,0.0,0.0,0.0,0.43074542284011824,0.0,0.0,0.0,0.9085397710402807,5.114614009857178,2.298604965209961,1,1,1,0,3,0.08493384,-0.07011932,0.033797026,-0.026532298,0.024178626,0.12684755,-8.8625146e-10,-0.08618386,-0.09863097,0.09032668,0.06674474,-0.028871406,0.040597316,0.0015516956,0.09006308,0.16763018,0.0540519,9.599672e-11,-4.789718e-09,0.043285552,0.0014507364,-0.13635951,0.24615384615384617,0.9864864864864865,0.7538461538461538,0.5725190839694656,131,15.30184805,150.734422623648,164.85297763685088,0.5625235811406847,0.5330128009523213,325.8065174995739,311.468845247296,5,131 +333.0,0.0,0.0,0.0,0.0,0.0,0.24857321187664191,0.0,0.0,0.0,0.6484278583008312,0.0,0.8498745902095588,0.0,0.5270572548798284,5.023108959197998,2.228468894958496,2,1,1,0,4,0.15046382,-0.1730942,0.059954282,-0.0194026,0.008150989,0.20306163,-2.956441e-10,-0.103643656,-0.08771299,0.22173329,0.048801076,-0.008445866,0.09742596,0.0036543012,0.065849744,0.034360997,0.016240953,5.1012006e-10,-9.76618e-10,0.036222164,0.0033992257,-0.15671946,0.16923076923076924,0.972972972972973,0.8307692307692308,0.5725190839694656,131,29.0,109.93641496486282,144.22519235505405,0.6573066429979856,0.5766741903370731,249.07803663245915,231.87282992972564,6,131 +86.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2985180989935694,0.0,0.0,0.0,0.0,0.9679090790326401,0.0,0.9667504449685403,3.9968905448913574,0.0,1,0,1,1,3,0.048408065,0.0282996,0.020521408,0.004692517,0.012843869,-0.011748663,-5.1598736e-10,-0.039328527,-0.070214376,-0.03357382,-0.010647265,0.011279986,-0.013274898,-0.00032223295,-0.002754994,-0.1464712,-0.0024797062,3.0516047e-09,4.1145518e-10,-0.18820727,-0.00030072895,0.046605233,0.2558139534883721,0.958904109589041,0.7441860465116279,0.5615384615384615,130,8.807665982,171.0857176702898,156.38621745092507,0.5178746828249614,0.5479970080924548,361.6106849580263,350.1714353405796,4,130 diff --git a/all_scores.csv b/all_scores.csv deleted file mode 100644 index 558f68fc..00000000 --- a/all_scores.csv +++ /dev/null @@ -1,306 +0,0 @@ -,Participant,Trials,Baseline,RNN,SPICE -0,0.0,80.0,58.96,59.29,59.33 -1,1.0,104.0,91.77,85.73,85.74 -2,2.0,104.0,68.67,73.84,73.77 -3,3.0,104.0,26.28,32.15,32.95 -4,4.0,104.0,43.34,37.57,37.56 -5,5.0,104.0,119.56,112.3,112.32 -6,6.0,104.0,74.47,73.46,73.53 -7,7.0,103.0,105.37,110.01,109.99 -8,8.0,104.0,42.65,36.97,36.95 -9,9.0,104.0,33.55,31.89,31.76 -10,10.0,104.0,124.83,117.73,117.74 -11,11.0,104.0,93.48,86.64,86.64 -12,12.0,104.0,74.2,70.48,70.46 -13,13.0,104.0,66.9,36.22,36.17 -14,14.0,104.0,116.37,112.38,112.39 -15,15.0,104.0,98.28,95.83,95.82 -16,16.0,104.0,118.71,74.23,74.2 -17,17.0,104.0,117.44,126.84,126.85 -18,18.0,104.0,32.29,31.5,31.51 -19,19.0,104.0,65.71,60.5,60.55 -20,20.0,104.0,30.69,32.0,38.63 -21,21.0,104.0,74.97,62.62,62.61 -22,22.0,104.0,88.84,61.93,61.89 -23,23.0,104.0,65.85,33.16,33.15 -24,24.0,104.0,73.91,71.97,71.96 -25,25.0,104.0,89.53,82.84,82.84 -26,26.0,104.0,114.49,104.51,104.51 -27,27.0,124.0,50.4,52.77,52.81 -28,28.0,104.0,53.59,40.66,40.64 -29,29.0,104.0,48.81,37.13,37.12 -30,30.0,104.0,38.73,43.02,42.67 -31,31.0,104.0,141.47,126.24,126.26 -32,32.0,104.0,121.05,91.38,91.37 -33,33.0,104.0,48.22,41.93,42.91 -34,34.0,104.0,104.25,91.91,91.89 -35,35.0,104.0,75.05,69.75,69.82 -36,36.0,104.0,59.69,27.36,27.33 -37,37.0,104.0,43.87,42.75,44.57 -38,38.0,104.0,53.85,53.64,53.73 -39,39.0,104.0,107.96,105.61,105.62 -40,40.0,104.0,54.88,51.24,51.29 -41,41.0,104.0,46.31,41.85,41.9 -42,42.0,104.0,54.99,26.5,26.48 -43,43.0,104.0,109.2,85.52,85.56 -44,44.0,104.0,45.0,43.52,43.54 -45,45.0,103.0,50.32,35.11,35.07 -46,46.0,104.0,114.15,97.54,97.51 -47,47.0,103.0,77.69,68.04,68.06 -48,48.0,104.0,76.92,73.34,73.32 -49,49.0,100.0,133.22,134.15,134.16 -50,50.0,104.0,74.69,71.35,71.33 -51,51.0,104.0,56.66,46.18,46.19 -52,52.0,104.0,51.1,49.17,49.07 -53,53.0,104.0,43.06,43.64,43.68 -54,54.0,103.0,86.38,74.54,74.54 -55,55.0,104.0,41.28,43.17,44.07 -56,56.0,104.0,55.92,55.18,55.19 -57,57.0,104.0,89.28,79.09,79.11 -58,58.0,99.0,121.17,122.29,122.31 -59,59.0,104.0,90.35,90.77,90.72 -60,60.0,104.0,107.78,115.5,115.49 -61,61.0,104.0,52.72,67.09,67.05 -62,62.0,104.0,63.63,64.2,64.24 -63,63.0,104.0,95.43,96.9,96.89 -64,64.0,124.0,80.53,76.01,75.94 -65,65.0,104.0,51.02,47.89,47.92 -66,66.0,103.0,76.7,69.33,69.36 -67,67.0,104.0,75.31,70.92,70.92 -68,68.0,104.0,111.72,100.32,100.3 -69,69.0,104.0,55.46,56.12,56.12 -70,70.0,104.0,59.21,62.25,62.24 -71,71.0,104.0,77.44,76.31,76.26 -72,72.0,104.0,65.99,65.74,65.75 -73,73.0,104.0,114.8,115.27,115.27 -74,74.0,96.0,105.7,100.47,100.48 -75,75.0,103.0,86.76,84.2,84.2 -76,76.0,104.0,45.74,39.56,39.57 -77,77.0,104.0,103.1,92.86,92.86 -78,78.0,104.0,39.19,34.07,34.07 -79,79.0,104.0,56.29,52.42,52.38 -80,80.0,104.0,81.45,84.23,84.23 -81,81.0,104.0,102.67,87.67,87.67 -82,82.0,104.0,111.26,105.29,105.28 -83,83.0,104.0,69.33,68.19,67.8 -84,84.0,104.0,63.87,63.08,63.04 -85,85.0,104.0,40.55,39.39,39.46 -86,86.0,104.0,114.85,112.17,112.15 -87,87.0,104.0,93.37,91.25,91.21 -88,88.0,104.0,126.91,118.0,118.02 -89,89.0,104.0,46.36,42.94,42.97 -90,90.0,103.0,129.28,127.66,127.65 -91,91.0,104.0,134.5,131.76,131.77 -92,92.0,104.0,96.44,82.74,82.64 -93,93.0,104.0,63.93,47.4,47.44 -94,94.0,104.0,134.02,126.27,126.27 -95,95.0,104.0,93.25,64.69,64.72 -96,96.0,104.0,33.44,34.97,35.27 -97,97.0,104.0,45.3,45.06,45.81 -98,98.0,104.0,85.33,80.64,80.66 -99,99.0,104.0,85.47,87.56,87.56 -100,100.0,116.0,113.78,113.9,113.89 -101,101.0,104.0,79.01,65.05,65.08 -102,102.0,104.0,38.28,38.78,41.4 -103,103.0,104.0,104.43,98.79,98.76 -104,104.0,104.0,74.38,77.03,76.97 -105,105.0,104.0,49.2,33.3,33.24 -106,106.0,104.0,101.37,85.95,85.98 -107,107.0,104.0,147.47,98.36,98.35 -108,108.0,104.0,138.39,132.15,132.17 -109,109.0,104.0,64.36,60.56,60.56 -110,110.0,104.0,123.0,114.31,114.31 -111,111.0,104.0,41.44,42.34,42.39 -112,112.0,103.0,96.38,88.62,88.66 -113,113.0,104.0,101.77,70.83,70.83 -114,114.0,104.0,105.1,100.23,100.25 -115,115.0,104.0,78.51,49.74,49.7 -116,116.0,104.0,100.2,88.98,88.5 -117,117.0,104.0,36.59,43.11,43.11 -118,118.0,104.0,74.66,75.45,75.5 -119,119.0,104.0,91.82,90.62,90.56 -120,120.0,104.0,94.41,97.65,97.6 -121,121.0,104.0,107.93,93.96,93.97 -122,122.0,104.0,95.79,95.38,95.42 -123,123.0,104.0,53.42,48.78,48.75 -124,124.0,104.0,52.88,50.16,50.14 -125,125.0,104.0,107.62,95.5,95.49 -126,126.0,104.0,56.74,54.01,54.03 -127,127.0,104.0,73.77,69.41,69.43 -128,128.0,104.0,98.42,103.28,103.29 -129,129.0,104.0,32.92,35.55,33.8 -130,130.0,124.0,69.31,68.28,68.32 -131,131.0,104.0,97.58,97.85,97.88 -132,132.0,104.0,81.55,78.53,78.55 -133,133.0,104.0,112.72,101.05,101.1 -134,134.0,104.0,76.45,73.73,73.69 -135,135.0,104.0,103.02,97.32,97.34 -136,136.0,104.0,136.9,136.63,136.63 -137,137.0,104.0,105.1,75.99,75.98 -138,138.0,104.0,137.82,137.15,137.16 -139,139.0,104.0,104.87,102.94,102.92 -140,140.0,124.0,144.21,126.79,126.81 -141,141.0,104.0,51.62,42.99,46.54 -142,142.0,104.0,64.72,41.32,41.37 -143,143.0,104.0,62.53,67.12,67.22 -144,144.0,104.0,75.75,51.26,51.25 -145,145.0,104.0,70.96,68.6,68.64 -146,146.0,104.0,64.0,60.33,60.78 -147,147.0,104.0,88.53,84.72,84.71 -148,148.0,104.0,123.02,127.32,127.32 -149,149.0,104.0,81.8,73.83,73.81 -150,150.0,104.0,67.64,64.57,68.67 -151,151.0,104.0,38.72,35.19,35.19 -152,152.0,104.0,116.07,109.12,109.1 -153,153.0,104.0,91.64,74.52,74.51 -154,154.0,104.0,92.28,90.24,90.26 -155,155.0,104.0,64.55,65.27,65.26 -156,156.0,104.0,58.91,54.69,54.68 -157,157.0,104.0,64.35,49.73,49.74 -158,158.0,112.0,116.24,91.0,90.94 -159,159.0,104.0,37.92,34.05,33.97 -160,160.0,104.0,79.26,75.73,75.72 -161,161.0,104.0,66.03,62.02,62.01 -162,162.0,104.0,66.46,66.09,66.07 -163,163.0,104.0,92.08,94.49,94.5 -164,164.0,104.0,86.37,85.0,84.99 -165,165.0,104.0,85.19,68.15,68.1 -166,166.0,104.0,70.85,80.44,82.78 -167,167.0,104.0,32.19,30.98,32.46 -168,168.0,104.0,81.61,67.27,67.24 -169,169.0,104.0,90.39,81.9,81.93 -170,170.0,104.0,47.12,41.54,41.47 -171,171.0,104.0,73.92,76.29,76.29 -172,172.0,104.0,78.54,62.94,62.93 -173,173.0,104.0,77.53,82.9,82.85 -174,174.0,104.0,139.49,131.95,131.95 -175,175.0,104.0,57.93,46.93,47.81 -176,176.0,104.0,31.41,34.03,33.15 -177,177.0,104.0,30.14,33.16,33.47 -178,178.0,104.0,66.76,65.92,65.96 -179,179.0,104.0,123.93,126.39,126.37 -180,180.0,104.0,63.0,62.62,62.58 -181,181.0,103.0,70.92,52.24,52.22 -182,182.0,104.0,80.75,68.33,68.32 -183,183.0,104.0,40.86,36.77,36.75 -184,184.0,104.0,92.21,89.9,89.96 -185,185.0,104.0,75.58,77.93,77.97 -186,186.0,104.0,100.01,95.39,95.4 -187,187.0,104.0,119.23,101.45,101.41 -188,188.0,104.0,113.8,111.43,111.43 -189,189.0,104.0,77.32,58.61,60.03 -190,190.0,104.0,100.26,93.41,93.4 -191,191.0,104.0,57.91,45.9,45.89 -192,192.0,104.0,33.55,33.71,33.73 -193,193.0,104.0,58.29,54.2,54.21 -194,194.0,104.0,103.7,98.89,98.88 -195,195.0,104.0,55.44,59.1,59.15 -196,196.0,104.0,98.39,92.74,92.71 -197,197.0,104.0,59.2,55.98,55.94 -198,198.0,104.0,86.51,74.06,74.05 -199,199.0,104.0,68.38,55.56,55.49 -200,200.0,104.0,114.04,113.01,112.98 -201,201.0,104.0,62.2,52.01,51.96 -202,202.0,104.0,48.52,47.31,47.3 -203,203.0,104.0,89.76,71.63,71.86 -204,204.0,104.0,86.34,80.59,80.64 -205,205.0,104.0,119.8,119.76,119.76 -206,206.0,104.0,38.98,39.11,39.05 -207,207.0,103.0,94.31,93.51,93.47 -208,208.0,104.0,118.98,118.62,118.63 -209,209.0,104.0,60.8,63.91,63.95 -210,210.0,104.0,53.1,56.13,56.14 -211,211.0,104.0,59.55,53.99,54.01 -212,212.0,104.0,85.14,88.13,88.13 -213,213.0,104.0,85.35,73.86,73.8 -214,214.0,104.0,105.49,107.86,107.84 -215,215.0,104.0,80.93,82.41,82.4 -216,216.0,104.0,109.29,98.69,98.7 -217,217.0,104.0,68.51,70.75,70.45 -218,218.0,104.0,72.29,84.5,84.48 -219,219.0,104.0,44.46,37.51,37.48 -220,220.0,104.0,127.59,114.27,114.25 -221,221.0,104.0,45.18,42.4,42.04 -222,222.0,104.0,70.7,68.67,68.71 -223,223.0,104.0,130.69,130.43,130.42 -224,224.0,104.0,92.31,81.04,81.05 -225,225.0,104.0,48.8,44.32,44.3 -226,226.0,104.0,98.57,62.69,62.72 -227,227.0,104.0,91.62,81.26,81.23 -228,228.0,104.0,95.62,88.99,88.99 -229,229.0,104.0,64.23,64.36,64.38 -230,230.0,104.0,58.53,62.35,65.18 -231,231.0,104.0,47.85,49.16,49.14 -232,232.0,104.0,34.68,35.94,37.23 -233,233.0,104.0,101.61,85.14,85.15 -234,234.0,104.0,76.24,77.91,77.92 -235,235.0,104.0,40.35,40.31,40.36 -236,236.0,104.0,112.69,90.16,90.15 -237,237.0,104.0,35.06,34.72,34.73 -238,238.0,104.0,51.05,49.29,50.91 -239,239.0,104.0,123.55,101.77,102.06 -240,240.0,104.0,71.41,68.73,68.71 -241,241.0,101.0,84.41,56.33,56.36 -242,242.0,102.0,101.05,65.32,65.32 -243,243.0,104.0,111.78,90.38,90.36 -244,244.0,104.0,99.05,96.13,96.11 -245,245.0,124.0,128.3,95.41,95.44 -246,246.0,104.0,55.44,53.92,53.87 -247,247.0,104.0,30.41,34.14,34.15 -248,248.0,104.0,28.69,34.45,33.16 -249,249.0,104.0,49.95,50.82,50.88 -250,250.0,100.0,149.36,137.0,137.0 -251,251.0,104.0,64.55,42.47,42.47 -252,252.0,104.0,56.25,55.08,54.78 -253,253.0,104.0,89.18,84.79,84.81 -254,254.0,104.0,132.2,132.1,132.08 -255,255.0,104.0,89.46,75.28,75.29 -256,256.0,104.0,41.14,43.12,42.62 -257,257.0,104.0,64.94,62.58,62.5 -258,258.0,104.0,42.48,40.48,39.96 -259,259.0,104.0,71.11,56.13,56.13 -260,260.0,104.0,72.9,67.03,67.02 -261,261.0,124.0,59.9,53.53,53.54 -262,262.0,104.0,40.76,36.82,36.83 -263,263.0,103.0,136.25,137.9,137.7 -264,264.0,104.0,87.57,76.7,76.7 -265,265.0,104.0,85.68,63.98,62.95 -266,266.0,104.0,73.4,55.43,55.41 -267,267.0,104.0,121.06,116.74,116.73 -268,268.0,104.0,60.09,63.05,63.0 -269,269.0,104.0,91.37,82.49,82.54 -270,270.0,104.0,68.11,64.58,64.58 -271,271.0,104.0,56.73,55.91,55.93 -272,272.0,104.0,104.16,96.62,96.65 -273,273.0,104.0,107.97,109.03,109.05 -274,274.0,104.0,68.93,55.51,55.49 -275,275.0,104.0,107.11,79.84,79.81 -276,276.0,104.0,74.45,65.05,65.11 -277,277.0,124.0,96.33,42.33,42.32 -278,278.0,104.0,66.41,58.7,58.75 -279,279.0,104.0,105.65,104.35,104.34 -280,280.0,104.0,78.93,54.95,54.91 -281,281.0,104.0,22.82,26.8,28.23 -282,282.0,124.0,119.51,62.61,62.61 -283,283.0,104.0,64.75,58.45,58.44 -284,284.0,104.0,42.09,43.71,44.35 -285,285.0,104.0,113.11,108.07,108.11 -286,286.0,104.0,89.42,83.1,83.14 -287,288.0,124.0,104.41,98.72,98.77 -288,289.0,104.0,63.02,60.2,60.19 -289,290.0,104.0,88.52,91.87,91.85 -290,291.0,104.0,31.85,29.88,29.9 -291,292.0,124.0,116.92,118.07,118.04 -292,293.0,104.0,92.34,82.37,82.4 -293,294.0,104.0,57.42,55.12,55.04 -294,295.0,104.0,53.64,49.83,49.83 -295,296.0,104.0,64.67,53.23,53.17 -296,297.0,104.0,71.28,72.76,72.72 -297,298.0,104.0,63.24,60.51,60.58 -298,299.0,96.0,80.76,81.67,81.68 -299,300.0,103.0,86.96,82.35,82.35 -300,301.0,104.0,67.92,62.75,62.77 -301,302.0,104.0,56.77,50.4,50.39 -302,303.0,104.0,77.46,69.0,71.21 -303,304.0,104.0,85.91,87.09,87.14 -304,305.0,104.0,89.22,70.91,70.88 diff --git a/analysis/check_age b/analysis/check_age new file mode 100644 index 00000000..3127007b --- /dev/null +++ b/analysis/check_age @@ -0,0 +1,42 @@ +import pandas as pd +import matplotlib.pyplot as plt +import numpy as np + +file_path = '/Users/martynaplomecka/closedloop_rl/data/eckstein2022/SLCNinfo_Share.csv' +df = pd.read_csv(file_path) + +conditions = [ + (df['ID'] >= 17) & (df['ID'] <= 221), + (df['ID'] >= 265) & (df['ID'] <= 300) +] +choices = ['CATEGORY 1', 'CATEGORY 2'] +df['Category'] = np.select(conditions, choices, default='CATEGORY 3') + +print("\nCategory counts:") +print(df['Category'].value_counts()) + +output_path = file_path.replace('.csv', '_with_categories.csv') +df.to_csv(output_path, index=False) +print(f"Updated file saved: {output_path}") + +# ID vs Age (years) +plt.figure(figsize=(12, 8)) + +colors = {'CATEGORY 1': 'red', 'CATEGORY 2': 'blue', 'CATEGORY 3': 'green'} +for category in ['CATEGORY 1', 'CATEGORY 2', 'CATEGORY 3']: + mask = df['Category'] == category + if mask.any(): + plt.scatter(df[mask]['ID'], df[mask]['age - years'], + c=colors[category], label=category, alpha=0.7, s=30) + +plt.xlabel('ID') +plt.ylabel('Age (years)') +plt.title('Subject ID vs Age by Category') +plt.legend() +plt.grid(True, alpha=0.3) +plt.tight_layout() +plt.savefig('id_vs_age_plot.png', dpi=300, bbox_inches='tight') +plt.close() + +print(f"\nID range: {df['ID'].min()} - {df['ID'].max()}") +print(f"Age range: {df['age - years'].min()} - {df['age - years'].max()} years") diff --git a/analysis/finetuning_SEQ/all_results.json b/analysis/finetuning_SEQ/all_results.json deleted file mode 100644 index 8d6a5875..00000000 --- a/analysis/finetuning_SEQ/all_results.json +++ /dev/null @@ -1,9366 +0,0 @@ -{ - "results": [ - { - "dataset": "data_128p_0.csv", - "best_params": { - "dropout": 0.31905877051758935, - "learning_rate": 0.0003638666906537081, - "hidden_size": 22, - "embedding_size": 9, - "n_steps": 62 - }, - "best_val_loss": 0.3835820792793909, - "final_train_loss": 0.3158555030822754, - "sindy_bic": 4.447191774137533, - "sindy_ll": -1.865074178983563, - "participant_equations": { - "0.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8089341211556266, - 0.11340760680137527, - 0.20601336749385474, - -0.32382421805123096, - 0.0, - 0.09821141523925904, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.2809159282752134, - 0.3455758166847831, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9564620474980643, - -0.5499402818875253, - 0.0, - 0.5742904581020674, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "1.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0477199154757832, - -0.11513825222138839, - -0.4052466764712587, - 1.054925771071844, - 0.0, - 1.7557952797554217, - -1.8080813948515788, - 0.0, - -0.8900641021845428, - 0.21777576703312812 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.7995004571057072, - 0.4312862082306291, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.502331976855071, - 0.24834972205978637, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.27851193907038674, - 0.1846409379555142, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "2.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9060767142012686, - 0.0, - 0.1412830492120939, - -0.1511799140357828, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7767850142337076, - 0.3127878746924153, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6551783196422482, - 0.1995012046454771, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11389156309574, - 0.13984208306434473, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "3.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9298652151188163, - 0.0, - -1.4242169514108691, - -0.1603926044213218, - 0.0, - 0.0, - 0.0, - 0.0, - 3.5003473331585644, - -1.956218647835203 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.0512557700154992, - 0.3155119210278755, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6503558648217549, - 0.19775522163469725, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.19011921414220298, - 0.19403273086913303, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "4.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9040568741557642, - 0.0, - 0.13628340218537544, - -0.14659106115053694, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7701216752834475, - 0.2821838709679916, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8410733046827626, - 0.10177688066820052, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10753955177642634, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "5.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8092461735718975, - 0.13618785206024753, - 0.2859278706455841, - -0.33783375015956724, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6026496319164013, - 0.3257165250315524, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6870805728397366, - 0.18534551838150654, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10738648815673041, - 0.13490109084724278, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "6.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0590778324789176, - -0.5488255605387732, - 1049129582586.5583, - 1.5402256230140159, - 0.453283957031707, - 2.7872977982911764, - -2.9154627406207223, - -1049129582583.5673, - -9.33468063032711, - 4.86375251196924 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -2.170653968621427, - 0.39709699857928815, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3788022703447173, - 0.227194880376882, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.46044909154723385, - 0.19102658191954355, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "7.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7669053982231876, - 0.1851714109707287, - 0.20872734981026414, - -0.2697468525626794, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.1370317510569212, - 0.3493281930979261, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.865273209340505, - 0.08737176614700681, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "8.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.920473814461001, - 0.0, - 0.32692356677334106, - -0.35376336298736727, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3796954101692545, - 0.33096526446985985, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3414903933934429, - 0.3167338111142038, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3494767238086839, - 0.2997388053501008, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "9.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8764540864844208, - 0.0, - -98610941951.46825, - -1.1099014282226562, - 0.0, - 0.23923873901367188, - 0.0, - 98610941958.96725, - -13.83993911743164, - 7.227840423583984 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.35099459482043566, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6022022377555306, - 0.2217056157329397, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.13553795181152994, - 0.15646280318540304, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "10.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8838860588808123, - 0.0, - -140459445735.27393, - 0.0, - 0.0, - 0.16522598266601562, - 0.0, - 140459445735.4332, - 0.49228668212890625, - -0.8088760375976562 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.06764217137190212, - 0.2716319572189042, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.690377898699915, - 0.18371129641824605, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1052785288938635, - 0.1330870651888586, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "11.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9219329859597614, - 0.0, - 0.37748523051440125, - -0.40383009657139324, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5554563970010464, - 0.3691063331847558, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5125614455622192, - 0.24512113884374795, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.29396787440079764, - 0.18820958735207388, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "12.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9107648521911089, - 0.0, - 0.1821877990139196, - -0.197871655969123, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.9070395220605144, - 0.32320752521110313, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7806904335671615, - 0.13587282304371984, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08583840662031693, - 0.11607602512029801, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "13.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9156140556284785, - 0.0, - -2.256102519858711, - 0.07821403228471902, - 0.0, - 0.0, - 0.0, - 0.0, - 4.909900528862892, - -2.765316815014671 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.5813663444569455, - 0.31541154368466723, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7111205781794815, - 0.17309615033032516, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1051643457107793, - 0.13346798513812697, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "14.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.903868652632916, - 0.0, - 0.11174949229705082, - -0.12267253168567738, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.6626977032192946, - 0.3581635778374343, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.487471844885702, - 0.2545163575293214, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.18469717362217788, - 0.17290189469925799, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "15.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8425151715056521, - 0.09714116023613001, - 75347160967.66234, - -0.882808980654814, - 0.0, - 0.1067651249772804, - 0.0, - -75347160963.50313, - -6.97671357026941, - 3.5466555315686663 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.12663525895752412, - 0.27276354560632277, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4145053452777214, - 0.2059840150934517, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.35981544206588567, - 0.17911962744425972, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "16.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0630314692096583, - -0.12638249096422324, - -1.525350789357412, - 1.0902983950012748, - 0.0, - 1.622426981913189, - -1.63847913347079, - 0.0, - 1.6372417339299439, - -1.2632403731961774 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.9708107286239895, - 0.37362612252808935, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6793140122355049, - 0.1867579200271304, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1476808165484253, - 0.1687598600743781, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "17.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9128818835592186, - 0.0, - -2.339636623400976, - 0.11991690011901945, - 0.0, - 0.0, - 0.0, - 0.0, - 5.051489304982689, - -2.8651196559139733 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.5202002038509106, - 0.28181789311244093, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8502626668022097, - 0.09522450735921584, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.12163443252211434, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "18.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9141097111409507, - 0.0, - 0.23219064618359858, - -0.22046179741802108, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.013594436702105, - 0.31977359879217643, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6270576710392365, - 0.2121007805547354, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.12350817064557021, - 0.14766121995667367, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "19.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9355137482031078, - 0.0, - 0.8672222153946857, - 0.0, - 0.0, - 0.7512865471532948, - -0.7820770825957233, - 0.8672222153946866, - -3.5081534464557653, - 1.75728825707175 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.4870014283073005, - 0.3247445117679172, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.48609345542317556, - 0.21463889042556286, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3314204391099715, - 0.15620020460616288, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "20.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9040462462172915, - 0.0, - 0.12739919435881525, - -0.13967353740225352, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7035028841795882, - 0.30268675452562066, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6447436063546041, - 0.20163055535134813, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.16328671492261493, - 0.1774762160879803, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "21.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8306507317342352, - 0.09592514611829758, - 0.23733075397502992, - -0.3565216874883592, - 0.0, - 0.09990121933700619, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.2152888933353043, - 0.33495982385699485, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7784017967706409, - 0.13688609160831014, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08607870790770233, - 0.11643785015464989, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "22.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.817990782569329, - 0.12550702472756178, - 0.32815622157529045, - -0.38102514935623577, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4357971067518709, - 0.30900481746568625, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8477406625002752, - 0.09783740240753555, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08200915490306211, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "23.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9375886839813191, - 0.0, - 188936795305.0317, - 0.0, - 0.0, - 0.6681137084960938, - -0.6971702575683594, - -188936795303.97266, - -2.0911178588867188, - 1.0130462646484375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3626090852605524, - 0.33733844085674647, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.24983603554761855, - 0.24679248546379465, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5253086870688707, - 0.18581530689053027, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "24.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8031934121443728, - 0.14211991935050586, - 0.271028920228687, - -0.32284800551778137, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6933385193162749, - 0.30836777411028443, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8142300903300306, - 0.11789927250619779, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10087856064637882, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "25.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8849589292065132, - 0.0, - 689120780053.5784, - -1.98162841796875, - 0.0, - 0.2923736572265625, - 0.0, - -689120780040.5859, - -24.537445068359375, - 13.250579833984375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.272673541990499, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8059253674671923, - 0.12101693079346577, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0940506945409952, - 0.12583710305436682, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "26.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8160176027063821, - 0.12741005212697493, - 0.3289213206339354, - -0.38273677378588855, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.44160482850155514, - 0.29657329840641566, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7579844645631231, - 0.14897339703430693, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.07883420754987486, - 0.10752835176754313, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "27.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8484568175716345, - 0.09932872928382427, - 0.6343772900193452, - -0.5920694061759588, - 0.0, - 0.0, - 0.0, - 0.6343772900193576, - -1.5485508566286186, - 0.812754213563406 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.17960694392128565, - 0.27040271381895964, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2654845812794463, - 0.4226948323665731, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.32508127820173116, - 0.3701122609184984, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "28.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8402360296678917, - 0.1052035463829933, - 0.9240916148285166, - -0.6871065882698939, - 0.0, - 0.0, - 0.0, - 0.9240916148285149, - -2.6988681798457104, - 1.47902089172274 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.24750631974787704, - 0.3211995357544704, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8191461954246513, - 0.11484738857443909, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08870870378086693, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "29.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7871985408113602, - 0.1513581016647401, - 0.41618934676526526, - -0.2119486292205559, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - -0.25773873205227343 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5817763602408234, - 0.3153322523379826, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8278607629777167, - 0.10995681159803627, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10060377747868196, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "30.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7658677272322056, - 0.1832522040827223, - 0.21109743137020895, - -0.27360012720898685, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.1097754465475669, - 0.3329032006991524, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9470382240263723, - -0.6398209569298906, - 0.0, - 0.6752512789349996, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "31.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9018032406068042, - 0.0, - 0.10672842400785587, - -0.11750278301300576, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.6670206416048864, - 0.3455810015032202, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5236009315389077, - 0.24450028801846263, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.20307578575870205, - 0.19645579698263624, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "32.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8182269465078948, - 0.12610624230593892, - 0.30689886349720474, - -0.35692436606437083, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5111654945102262, - 0.2757273265641907, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6060237425817128, - 0.2165048397665036, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.18667187528311663, - 0.19065102202263584, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "33.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9539147124178615, - 0.0, - 2589820358397.256, - 0.0, - 0.0, - 0.5974794796564887, - -0.6228895647194823, - -2589820358396.704, - -0.9453748679049722, - 0.35888303033141966 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.6011067034052917, - 0.33281295466761573, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8400524670062408, - 0.10190196554103605, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09982961201603753, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "34.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.920401403144277, - 0.0, - 0.3253446483535913, - -0.3507025961956667, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3714543944963296, - 0.3380550694415202, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8196848651515077, - 0.11488481462526388, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0949579596308467, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "35.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9216853330999074, - 0.0, - 0.34221347075743486, - -0.3677963668026377, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.443189842459439, - 0.3184074356095807, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5185787539168608, - 0.24370085393935925, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2422094338192259, - 0.21337608480736853, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "36.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9036685166642366, - 0.0, - 0.11781504113351224, - -0.12825101365309488, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7126643981908923, - 0.31485760426226994, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7004585559054812, - 0.17617165313974242, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1334676484736532, - 0.1586241676607989, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "37.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0360070769749326, - -0.10592940812058345, - -1.1909440799129016, - 0.888516529203052, - 0.0, - 1.3924461115147189, - -1.4089004423711073, - 0.0, - 1.233174046825803, - -0.9778020121780481 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.6255326253547182, - 0.34439746067074184, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5512639764794026, - 0.23513641580005457, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.24043117149578727, - 0.21373259760239255, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "38.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.873142077629804, - 0.0, - 2.067739347227096, - -0.5344113106032348, - 0.0, - 0.21181752456641717, - 0.0, - 2.06773934722707, - -7.296069490477975, - 3.499062955896101 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.29740559041362563, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.871292473761148, - 0.08345970418426506, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.052356710858409906, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "39.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9340757460736968, - 0.0, - -672907344300.9565, - 0.140533447265625, - 0.0, - 1.004150390625, - -1.0649871826171875, - 672907344303.3804, - -5.346038818359375, - 2.787933349609375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.341083316458518, - 0.30753158781542944, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5495882459507144, - 0.23663226887637206, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.22315409274452383, - 0.20695830154883765, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "40.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.904405539824535, - 0.0, - 0.1282496749687341, - -0.13847221446548272, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7070410601613712, - 0.29879464528376815, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4942025267833547, - 0.20414605306288863, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3401798696681548, - 0.1694539936509874, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "41.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7921079905829513, - 0.15220730314533562, - 0.24575878918250274, - -0.29739284068458166, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.815777060423507, - 0.2798740609336696, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6394718067568772, - 0.2032871379548359, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1649482285750165, - 0.17887237159201083, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "42.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7978384596338179, - 0.14435068514790345, - 0.2687621093033661, - -0.3217597292530386, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6753162654975243, - 0.2936861075171478, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8875644252580583, - 0.0725350520701234, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08003167665447113, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "43.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8158564060671721, - 0.12618500385068238, - 0.3421418522633384, - -0.395407210126546, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.40953379247219635, - 0.2837916335527538, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.853868863063695, - 0.09420471142602646, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09098997217733998, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "44.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9182785027883976, - 0.0, - 0.31550880047397567, - -0.34136125437574527, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.29887585763833, - 0.34240994370797073, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.78172095382504, - 0.13528152968903165, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08714727424951334, - 0.11767467876421142, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "45.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8140879495340637, - 0.12398094560979524, - -3.0365647839498613, - 0.08548202223944129, - 0.0, - 0.0, - 0.0, - 0.0, - 6.731142452546403, - -3.830178753678412 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.34950823284103183, - 0.26039719209718026, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7404656506329047, - 0.15739027776104808, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1005975215683184, - 0.13000543932264574, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "46.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9392292080825988, - 0.0, - 1.7876296442101127, - 0.05843202953370413, - 0.0, - 0.8530670640688176, - -0.8992269757981977, - 0.0, - -3.7471112697533644, - 1.8924054983871457 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5367796266072866, - 0.32101053942568913, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4477623389861437, - 0.20543146805458098, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.36230040110271566, - 0.17857491480460466, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "47.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7744876404555461, - 0.17398150180244373, - 0.22193038977217683, - -0.28215611359071796, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0528782952170006, - 0.2933728321535335, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8320304737885282, - 0.1069097738723335, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10989429881738026, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "48.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7921224219681904, - 0.1522427576106053, - 0.24792032846151632, - -0.2970768009074618, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7904086172422617, - 0.28490393918556817, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8066156872896104, - 0.12147034975638277, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.07830614228642635, - 0.10892446234097908, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "49.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0325776362364143, - -0.09005648462919341, - 0.0644449355563064, - 0.905370270004736, - 0.0, - 1.6536823048343066, - -1.7120916010668914, - 0.0644449355562815, - -1.8018099693265472, - 0.7575148700513701 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.9851695870885733, - 0.3833303519012002, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2387854428201632, - 0.24153320701111747, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5270493765227668, - 0.20287262924484245, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "50.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8123965109192359, - 0.1296640625684627, - 0.31572052854473714, - -0.36814980965750027, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.486591337306275, - 0.2719863716884861, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.882649924783439, - 0.07614188277997537, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.05187159844695209, - 0.05043597632244268, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "51.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.914600876662194, - 0.0, - 0.2725571609384932, - -0.2953966956276308, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.109142395079342, - 0.3034376811852648, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6174361295217055, - 0.2115552695835219, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.20157594920033295, - 0.19914797844010412, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "52.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0358498750209508, - -0.10902050272995617, - -1.7407584545313113, - 0.8377110066437552, - 0.0, - 1.2203164400943711, - -1.2039001541531875, - 0.0, - 2.5891505140458686, - -1.754991906205117 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5403247102125592, - 0.34252378900080166, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.47481468697718776, - 0.20584714068598828, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.40705173596206357, - 0.1882764659947515, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "53.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0579448805088931, - -0.6098814609701063, - -198644753954.67084, - 1.5809103572373222, - 0.5176826509860251, - 2.951130631523717, - -3.095517398222938, - 198644753958.38806, - -11.015497425221524, - 5.790960974346373 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -2.201269368734398, - 0.4070092390822665, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.448497280581199, - 0.20952836313804213, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3907952447417064, - 0.18803299571630197, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "54.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8321567825646775, - 0.1125608654330382, - -156923960025.36154, - -0.6780981336625547, - 0.0, - 0.0, - 0.0, - 156923960027.153, - -2.5691778204925177, - 1.3919708133208042 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.2844638376988913, - 0.3106249653461233, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9494026442918571, - -0.6543642939471449, - 0.0, - 0.6893853751546168, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "55.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8921454807048134, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.2999315168690771, - 0.3423783567844682, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8038830007819603, - 0.1237021814113645, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10344673973304458, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "56.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9074388371938122, - 0.0, - 0.20828771946351402, - -0.2232984566344421, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.9211865285842592, - 0.2822049379117276, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7981677244020721, - 0.12542143765963742, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09852327593761581, - 0.1299305247911011, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "57.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9066976932117116, - 0.0, - 0.15491978638214482, - -0.16446737077455895, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.8280533394787315, - 0.29223685692032003, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6635645404233753, - 0.19394808444186534, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.15976284757134443, - 0.17710564435722914, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "58.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9103427276503987, - 0.0, - 0.185276198460096, - -0.1988256152970257, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.9170818909333498, - 0.29041828623299243, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7074494423995443, - 0.1741453059686569, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11846833299304989, - 0.14564438159036966, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "59.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9081081844538158, - 0.0, - 0.2134461568309586, - -0.19435941163373516, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.9005484345119742, - 0.2885017354198194, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7669148262010885, - 0.14272973413728066, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10607428753934918, - 0.13659417622909129, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "60.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9327828160054, - 0.0, - 1.7076836482798412, - 0.08828079859538707, - 0.0, - 0.860469912646371, - -0.905343932435793, - 0.0, - -3.664198800275125, - 1.8581877655129122 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.2919534661383014, - 0.3072103823507204, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.666130190620653, - 0.1919025335515219, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.162800340025651, - 0.17830590587121492, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "61.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8953987015434581, - 0.0, - 0.05308490161374877, - -0.05757229970196205, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.45252374594153727, - 0.273668523336084, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7895153819679596, - 0.13189976074054496, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.07574256886705186, - 0.105411021975373, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "62.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.044699388515029, - -0.10352156637772605, - -0.2746096763465435, - 0.9967577704792192, - 0.0, - 1.6667480704059292, - -1.708669965818349, - -0.27460967634653866, - -0.39464592905169604, - -0.08639128969755305 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.9072166699080226, - 0.3586608154548234, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2761051109434239, - 0.4135254420699714, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3549816900151385, - 0.3280794178466653, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "63.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9138273593392997, - 0.0, - 0.3158178788710792, - -0.34030094782388765, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.2456430822376923, - 0.30993568756502643, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8448681972602029, - 0.09891076595132926, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11385393307864435, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "64.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9215842628773185, - 0.0, - 0.3513555870168769, - -0.37553230848553965, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5036586247749457, - 0.32242181728788183, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5866620010946968, - 0.22491472123174808, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.17677823444754803, - 0.1841393982637733, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "65.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8930009527918013, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.3323567812828522, - 0.27271467621731055, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6987816447070374, - 0.17866411879878777, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11896963767329904, - 0.14588720044436868, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "66.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9368754340188905, - 0.0, - 2574559878720.6436, - 0.114501953125, - 0.0, - 0.87164306640625, - -0.91864013671875, - -2574559878718.8354, - -3.9254150390625, - 1.9927978515625 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.250932382531707, - 0.3011612080575552, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6747231452721305, - 0.1892853170337215, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.14001920443060464, - 0.16242213334096728, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "67.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8406118167834715, - 0.10280588578003663, - -34268006935.422462, - -0.5813169857829432, - 0.0, - 0.0, - 0.0, - 34268006936.539597, - -1.2538635917983174, - 0.6587811494630149 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.19013523995241285, - 0.27032510508722907, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.829767179149283, - 0.10875070308296833, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0899823331565131, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "68.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9280171779196423, - 0.0, - 0.4189792657162195, - -0.4552078764840516, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.7301801845077822, - 0.3798934930664, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5907312417605783, - 0.2205158013819672, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.25379014007973477, - 0.21929638947738017, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "69.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.927180065584349, - 0.0, - -1.2713796616907969, - -0.17553448988697296, - 0.0, - 0.0, - 0.0, - 0.0, - 3.235675927116658, - -1.8318047725390065 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.0545103579219794, - 0.29888505819829764, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5406715647238793, - 0.23843853151114694, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.25725827285473424, - 0.22002641381104968, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "70.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0263453407802885, - -0.09392227804916767, - 240177331786.6709, - 0.8005577081424579, - 0.0, - 1.4267819278166871, - -1.457706339002204, - -240177331787.07672, - -0.3118288307351178, - -0.12098848919870603 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.7639729244644395, - 0.3423844071596998, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5951147179434662, - 0.22072496586021517, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.20810012545162115, - 0.20239066263569078, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "71.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9120063077348072, - 0.0, - 0.231341908313462, - -0.25082005167579935, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.022318379011888, - 0.3054230500287215, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7552787169227764, - 0.14994299251943363, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09105987005279786, - 0.12074145428040979, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "72.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.730978594827201, - 0.1949531202191529, - 0.23675188056880808, - -0.2198414021115558, - 0.0, - 0.0, - 0.0, - 0.0, - -0.06982404054564625, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.6904434010520182, - 0.3552106541940103, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9508729380549961, - -0.6503482990379729, - 0.0, - 0.6840163082995138, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "73.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9047293088433058, - 0.0, - 0.09450124386320348, - -0.10631860884717531, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.6601270248872294, - 0.29263597202582114, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8277005598189586, - 0.10935809030724457, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09919472322872028, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "74.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9068384275775774, - 0.0, - 187745326444.22113, - 0.7970657348632812, - 0.0, - 0.0, - 0.0, - -187745326451.04688, - 13.927497863769531, - -7.932945251464844 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.19497060327988858, - 0.25419591533346714, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6091432087481383, - 0.2161740489449754, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.17586977684535995, - 0.18482912086573375, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "75.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8455875741523508, - 0.09765842739034908, - 0.6945954208409981, - -0.595992700194041, - 0.0, - 0.0, - 0.0, - 0.6945954208409931, - -1.8250277082746686, - 0.9771698468100352 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.27749953420899104, - 0.2574968596882751, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7968086699296706, - 0.12663417698420812, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09079485070340336, - 0.12223653956426478, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "76.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0210152516462012, - -0.07959815525113788, - -0.48011179092661277, - 0.7053643945740159, - 0.0, - 1.2625290351447125, - -1.2867375929831675, - -0.4801117909265975, - 0.9764080501189464, - -0.7571029700367076 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.6783319713393514, - 0.35591708703685715, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.36854450010499157, - -0.3786555258897158, - 0.0, - 1.2874803572319349, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.42036140785254095, - -0.5716211486858289, - 0.0, - 1.4670635128428227, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "77.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0091972436393037, - -0.07671307281145402, - 0.11602689184118048, - 0.7349140176496685, - 0.0, - 1.3924687041281862, - -1.4295556779004002, - 0.11602689184114864, - -1.6264571532181025, - 0.6386551371892153 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5077071958584307, - 0.34998652475245123, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4023571315548413, - 0.20546028434772054, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3506420146271222, - 0.17712449784581122, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "78.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7724747770399859, - 0.1732835788985195, - 0.23324302503883054, - -0.2950782548431381, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.953023806071973, - 0.36236403007056045, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8540067929166847, - 0.09458557144196869, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.052364222361483984, - 0.05149700041894226, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "79.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.822902824492103, - 0.10194469631441799, - 0.21672313107380653, - -0.33700475461056933, - 0.0, - 0.09956331605688587, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.2972536548977742, - 0.32676180222538637, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8880336109426606, - 0.07298582912048394, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "80.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.927614082366789, - 0.0, - 1.5228692183805108, - 0.05868188352634318, - 0.0, - 0.7370802527926004, - -0.7646797770603453, - 0.0, - -3.1637999579009204, - 1.5623603125970504 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.1983061753029072, - 0.31601138255369865, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6913108073819876, - 0.18029357196554044, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.16243561433128292, - 0.1798412847911055, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "81.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.831303669508471, - 0.08976810750456016, - 0.23776725863940007, - -0.3662957019152169, - 0.0, - 0.10273627504473595, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.2299599189405734, - 0.3168537240231187, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9395531867048701, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "82.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9032619686194999, - 0.0, - 0.13731764564436003, - -0.14867742082966634, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7388757196406435, - 0.290106495445708, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7117069629047549, - 0.17050078978882893, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.15176192361491325, - 0.17293744324877522, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "83.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8953910187351299, - 0.0, - 0.0, - -0.05106840030437376, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.4540269551318304, - 0.2870026034901833, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8404544429673392, - 0.10216574014563752, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08688525665638738, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "84.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9206196132843891, - 0.0, - 0.34853877573967235, - -0.37496162883370626, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3872219873555838, - 0.35803374262264276, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6467304293997095, - 0.19719323928927165, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.23902871767111974, - 0.21769519170490859, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "85.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9203181646624846, - 0.0, - 0.32768307530593793, - -0.3530333409316095, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.4150893093254884, - 0.34607409475351736, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6182325060999361, - 0.21067760341387537, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2086138753732394, - 0.2017502438424263, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "86.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9320456171235788, - 0.0, - -1.0933805406012913, - -0.2602468005034114, - 0.0, - 0.0, - 0.0, - 0.0, - 3.028212449232771, - -1.719938137332866 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3327887844538107, - 0.30925261629025064, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4794139261373958, - 0.19830997038413725, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3429719415680218, - 0.1731866890650272, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "87.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.042077825450635, - -0.11291227410951588, - -0.22932742417346336, - 1.0243813822139582, - 0.0, - 1.6495820556639813, - -1.6832541930963216, - -0.2293274241734684, - -0.6235645327225877, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.7017623569411384, - 0.36723865228199826, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3632497786123892, - -0.5628271549357344, - 0.0, - 1.6764659985180668, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3288968614714213, - -0.4306466994891733, - 0.0, - 1.5512727541754603, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "88.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8180060469092867, - 0.12547429895418222, - 0.33227507017670976, - -0.3829485725283484, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4278569365180797, - 0.24915156303711966, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6066104489143511, - 0.21529137366020198, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.211239722293875, - 0.20324203455810164, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "89.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8115215313950885, - 0.13029120897343804, - 0.30869208511680457, - -0.3585164328329851, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5045796247776256, - 0.28453289059325276, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7984127155013834, - 0.12678099010296986, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11386329340893998, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "90.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9192488464260348, - 0.0, - 0.3197789155969642, - -0.34422855421949006, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3161273601979604, - 0.32892373045440954, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5579316592157179, - 0.2052099647592282, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3341477657823563, - 0.20529055195819226, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "91.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8889303821167526, - 0.0, - 0.05240969134954157, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.3994824561562693, - 0.2909450633033168, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8548848000912888, - 0.0935208376174773, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.07245891600541658, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "92.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8210162872980624, - 0.12262657798245921, - 0.3434401550622593, - -0.39530387751512963, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4016806963374341, - 0.2702714694117042, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7983526962442984, - 0.1268915078950177, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11681137475534346, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "93.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.845718440134656, - 0.09994569810629478, - -91674796951.92094, - -0.5810374705396012, - 0.0, - 0.0, - 0.0, - 91674796952.99011, - -1.1519663927392227, - 0.606267422341632 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.19449552292708755, - 0.2891824480650243, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8393421516181772, - 0.10247936603312796, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0932138844727889, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "94.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7917832477800051, - 0.14916504590837823, - 0.2599773387386434, - -0.3106789139157773, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7372913891504848, - 0.2655692951192874, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8393280737153345, - 0.10209684797775795, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10922932116955049, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "95.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9147917795629283, - 0.0, - 0.32213040175714075, - -0.34972211636197115, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.322123444176878, - 0.3477297977993832, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8512191391390849, - 0.09458544703105967, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1275682824416436, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "96.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9056306325183139, - 0.0, - 0.12823265382560367, - -0.1388182594073425, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.727629325185017, - 0.3270989786478136, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.46882724734635, - 0.19992441606572536, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.36561363398621377, - 0.1782998232976784, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "97.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9286095749085033, - 0.0, - -1.4000470686864481, - -0.17854318873825398, - 0.0, - 0.0, - 0.0, - 0.0, - 3.505017141352778, - -1.9700424297811248 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.0970086191037742, - 0.31324492459813147, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5570006398968758, - 0.23236871392758196, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.22393862380989327, - 0.2067991955814882, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "98.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9070659342168521, - 0.0, - 0.1602066427483277, - -0.17011409164137564, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.8315717110772861, - 0.30653575840050595, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8567517031353509, - 0.0921323875040205, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09257564233121227, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "99.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9036829312823246, - 0.0, - 0.0, - -0.09061107926896002, - 0.0, - 0.0, - 0.0, - 0.0, - 0.24602035156769086, - -0.17262079555866355 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.6396222569183413, - 0.2890822884324698, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7385871372319042, - 0.15826952891222246, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11643215906993555, - 0.14505381887727245, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "100.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9243950584563855, - 0.0, - -0.5610747408355617, - -0.1728320159623112, - 0.0, - 0.0, - 0.0, - -0.5610747408355597, - 2.8815541021138507, - -1.6241912530973373 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.0294670548536715, - 0.36289414238560747, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8084220056945884, - 0.12198423420254921, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08448578378374805, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "101.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9284705014506847, - 0.0, - -1.075117640688253, - -0.2425547709074336, - 0.0, - 0.0, - 0.0, - 0.0, - 2.9325798141997534, - -1.6578597702415823 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.2485176205116848, - 0.34604317614333685, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7521096701902149, - 0.14922675945872552, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.14629151538798096, - 0.16914257892511778, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "102.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8819023882702182, - 0.0, - 503860442720.0281, - -1.892120361328125, - 0.0, - 0.3012237548828125, - 0.0, - -503860442707.5254, - -23.538848876953125, - 12.649261474609375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.25521680466383595, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7641985866737344, - 0.14453124601428746, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10910882919714565, - 0.13944631446921155, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "103.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8867212435175573, - 0.0, - 1057894731038.9102, - 0.51019287109375, - 0.0, - 0.0, - 0.0, - -1057894731043.5533, - 9.41864013671875, - -5.2977294921875 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.10230018489626831, - 0.3327687867259597, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5707952499673021, - 0.22899287715510175, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.23838500035804253, - 0.21478408014803524, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "104.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7932510475851282, - 0.1508219869111052, - 0.25177562846358953, - -0.30011279646124217, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7637308834120338, - 0.3034565108754381, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6405536270344765, - 0.2053714438335643, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.13044527571676443, - 0.1534572854269058, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "105.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9548944872825347, - 0.0, - 3361911610972.112, - 0.0, - 0.0, - 0.5503772085748957, - -0.560564042328825, - -3361911610971.9106, - -0.12433011405042642, - -0.1197410232766933 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5510236378209943, - 0.3236749987573267, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3340164857769468, - 0.2709689577694372, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3909863847430301, - 0.2580845161597743, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "106.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.921121557789304, - 0.0, - 0.27993315583344686, - -0.30181976913066655, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.273973072622756, - 0.3138414203445311, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4607012767660696, - 0.23936493663280542, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.27156049008763133, - 0.1794131750315666, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "107.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9034123655666084, - 0.0, - 0.0704168218023672, - -0.07987824204609563, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.5862792112243336, - 0.26999329401035166, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.650766582439831, - 0.19993468102625647, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.14698531657242203, - 0.16695921305952335, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "108.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9121885759105347, - 0.0, - 0.12523433158329078, - -0.13561732755815323, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.8023792722936492, - 0.29663778796759144, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.37931139434015, - 0.20183257603692778, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.49234298296641044, - 0.16798026700617907, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "109.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9355483909004468, - 0.0, - -78451760400.2414, - 0.0, - 0.0, - 0.7076339721679688, - -0.7417430877685547, - 78451760401.57373, - -2.734760284423828, - 1.3610496520996094 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3512060964589927, - 0.3502114468285055, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.36599122795746586, - -0.3807441642928708, - 0.0, - 1.301092435714721, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.41413663353954244, - -0.5354246540941272, - 0.0, - 1.4211893707780054, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "110.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.928524018452841, - 0.0, - -1.131914115581406, - -0.1667081118791651, - 0.0, - 0.0, - 0.0, - 0.0, - 2.900103860757111, - -1.6394178712146528 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.089993642324377, - 0.29693992061592683, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.46884471526323496, - 0.19664699216533243, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3835116772337433, - 0.17562957365220017, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "111.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8280918358145355, - 0.09730578980940388, - 0.24010767979228198, - -0.3578665045969154, - 0.0, - 0.09555466331806778, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.1897969638708845, - 0.3437708789784242, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7520932149528822, - 0.15208800021815572, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09006426683540288, - 0.1199363291499574, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "112.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9125961276227743, - 0.0, - 620692228029.2899, - -2.08929443359375, - 0.0, - 0.0, - 0.0, - -620692228019.292, - -19.7098388671875, - 11.787689208984375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.19333416810076462, - 0.2796981060908897, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.540609108180387, - 0.23691282164267424, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2571673460566945, - 0.21790026981092014, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "113.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.045350858554072, - -0.10576838251486406, - -0.23242093394231797, - 1.0187579778860416, - 0.0, - 1.7047422776865118, - -1.749340304703201, - -0.232420933942354, - -0.6309907988676797, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.8436927733019872, - 0.36562002713468267, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5435342214471173, - 0.2196730951227794, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.31935061941480425, - 0.19466018289738138, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "114.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8932041471833452, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.42280438165710876, - 0.2690085905386638, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6580142336683861, - 0.1959944655759599, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.16878501858489475, - 0.18299325681664919, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "115.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8934202385317758, - 0.0, - 8.010716944421823, - -2.5500963724874546, - 0.0, - 0.3165337238545396, - 0.0, - 8.01071694442146, - -30.362461765826914, - 16.586875379366067 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.07601472105916891, - 0.24720254804938313, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8634977875369838, - 0.08784539798530754, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09810223239401242, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "116.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8142942660646939, - 0.12933028702119545, - 0.308829866743677, - -0.35976227468346966, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5013405854135543, - 0.29485051975205095, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8889998471430356, - 0.07218672046235887, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.05603779716725275, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "117.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8788038338782466, - 0.0, - 802240580066.4767, - -1.494537353515625, - 0.0, - 0.271820068359375, - 0.0, - -802240580056.218, - -19.18853759765625, - 10.171966552734375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.26062743816045253, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6135865934450565, - 0.21328341932569075, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.19132958845298403, - 0.1937854581325363, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "118.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9153983426625455, - 0.0, - 0.21267871728482435, - -0.2315535128224619, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.9984508429719448, - 0.2964979800856474, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.43283423573978413, - 0.20465725455608907, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3766796015185459, - 0.18119009720124563, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "119.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8984989868992302, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.14663818784336888, - -0.10759059559084724 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.5178530156833788, - 0.2740830582199257, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6827430530490247, - 0.18282129903075772, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.18073817277829832, - 0.1889892827709722, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "120.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9250318849920657, - 0.0, - 0.35762569196842375, - -0.3821480307890015, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5279442562295813, - 0.35177563023781444, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3370609196597343, - 0.1913650305479164, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.49713567827689825, - 0.1634024237574172, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "121.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9061469386983908, - 0.0, - 0.10976676145287574, - -0.11825216920538503, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7044009918443815, - 0.2974682992148565, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6500265954238238, - 0.19610039885443853, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2011980117485986, - 0.19801426515974066, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "122.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9555891577363189, - 0.0, - -482489562450.51984, - 0.0, - 0.0, - 0.5359866354410462, - -0.5505806350900019, - 482489562450.3396, - 0.6245340998354854, - -0.48584361063336146 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.6120825311434814, - 0.33612883537901717, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.48549660507028597, - 0.21606162280618685, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3087452983557629, - 0.17241440596363236, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "123.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9164661064782641, - 0.0, - 0.2495693616298864, - -0.2719606704674735, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.12400388435818, - 0.31740729420977737, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6291010258447787, - 0.20560860141466714, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2088700830691204, - 0.20198841141102708, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "124.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8880238151862827, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.30908314893940303, - 0.2801275458027224, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6543517583774803, - 0.19763808613053793, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1437531034835467, - 0.16398649445573507, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "125.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9335988184320205, - 0.0, - 0.419035763882346, - -0.4521066287295413, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.9835900902030121, - 0.38972270694771577, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.511144402319865, - 0.2017179105955964, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3512602268797568, - 0.17100051225048088, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "126.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9295107857487293, - 0.0, - 0.44538223614580585, - -0.48078335654328863, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.8752200559619063, - 0.36420003330834894, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.28076285006829765, - 0.4010443703251272, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2819947589052758, - 0.3969762933923318, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "127.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8935042450814392, - 0.0, - 0.0, - -0.05070950274018878, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.44272928459585564, - 0.29693762430077164, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7896977764178686, - 0.1321137756988995, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11410254890506623, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - } - }, - "participant_metrics": { - "0.0": { - "ll": -0.34424774569401506, - "bic": 1.3708862517583802, - "params": 10, - "n_val_trials": 60 - }, - "1.0": { - "ll": -4.578895832809169, - "bic": 10.113138730136829, - "params": 14, - "n_val_trials": 60 - }, - "2.0": { - "ll": -0.7011667818627865, - "bic": 2.016485248058888, - "params": 9, - "n_val_trials": 60 - }, - "3.0": { - "ll": -2.6777352322182333, - "bic": 6.106100300843852, - "params": 11, - "n_val_trials": 60 - }, - "4.0": { - "ll": -0.45797976086427217, - "bic": 1.4618721300248245, - "params": 8, - "n_val_trials": 60 - }, - "5.0": { - "ll": -0.6699205138419508, - "bic": 2.0222317880542517, - "params": 10, - "n_val_trials": 60 - }, - "6.0": { - "ll": -3.6153068096786836, - "bic": 8.322438835949928, - "params": 16, - "n_val_trials": 60 - }, - "7.0": { - "ll": -0.1818462776597788, - "bic": 0.9096051636158377, - "params": 8, - "n_val_trials": 60 - }, - "8.0": { - "ll": -0.018247019201768532, - "bic": 0.6506457227368521, - "params": 9, - "n_val_trials": 60 - }, - "9.0": { - "ll": -0.6931471805599454, - "bic": 2.2051632735643105, - "params": 12, - "n_val_trials": 60 - }, - "10.0": { - "ll": -0.3716097981816585, - "bic": 1.562088508807737, - "params": 12, - "n_val_trials": 60 - }, - "11.0": { - "ll": -0.3413600253870343, - "bic": 1.2968717351073835, - "params": 9, - "n_val_trials": 60 - }, - "12.0": { - "ll": -0.030069099951063005, - "bic": 0.674289884235441, - "params": 9, - "n_val_trials": 60 - }, - "13.0": { - "ll": -1.3708323698684335, - "bic": 3.492294576144252, - "params": 11, - "n_val_trials": 60 - }, - "14.0": { - "ll": -0.6976973352445975, - "bic": 2.00954635482251, - "params": 9, - "n_val_trials": 60 - }, - "15.0": { - "ll": -10.636408386619628, - "bic": 22.228163837757748, - "params": 14, - "n_val_trials": 60 - }, - "16.0": { - "ll": -0.5016609742861494, - "bic": 1.9586690130907887, - "params": 14, - "n_val_trials": 60 - }, - "17.0": { - "ll": -0.9170291660646548, - "bic": 2.5164490924996596, - "params": 10, - "n_val_trials": 60 - }, - "18.0": { - "ll": -0.7107132671411904, - "bic": 2.035578218615696, - "params": 9, - "n_val_trials": 60 - }, - "19.0": { - "ll": -2.4471311698271774, - "bic": 5.781370328135809, - "params": 13, - "n_val_trials": 60 - }, - "20.0": { - "ll": -0.641903259806691, - "bic": 1.8979582039466971, - "params": 9, - "n_val_trials": 60 - }, - "21.0": { - "ll": -0.6931471805599454, - "bic": 2.136924197527276, - "params": 11, - "n_val_trials": 60 - }, - "22.0": { - "ll": -0.39901507333450126, - "bic": 1.4121818310023175, - "params": 9, - "n_val_trials": 60 - }, - "23.0": { - "ll": -0.6931358374004726, - "bic": 2.2733796632824, - "params": 13, - "n_val_trials": 60 - }, - "24.0": { - "ll": -0.7808650234980585, - "bic": 2.175881731329432, - "params": 9, - "n_val_trials": 60 - }, - "25.0": { - "ll": -3.8408839986117203, - "bic": 8.50063690966786, - "params": 12, - "n_val_trials": 60 - }, - "26.0": { - "ll": -0.6665859141468098, - "bic": 2.0155625886639696, - "params": 10, - "n_val_trials": 60 - }, - "27.0": { - "ll": -0.6931471805599454, - "bic": 2.273402349601346, - "params": 13, - "n_val_trials": 60 - }, - "28.0": { - "ll": -0.023716734069432508, - "bic": 0.866302380583285, - "params": 12, - "n_val_trials": 60 - }, - "29.0": { - "ll": -0.6149335277947938, - "bic": 1.9122578159599377, - "params": 10, - "n_val_trials": 60 - }, - "30.0": { - "ll": -0.19508373205134769, - "bic": 1.0043191484360103, - "params": 9, - "n_val_trials": 60 - }, - "31.0": { - "ll": -0.5621599710555387, - "bic": 1.7384716264443925, - "params": 9, - "n_val_trials": 60 - }, - "32.0": { - "ll": -0.6931471805599454, - "bic": 2.068685121490241, - "params": 10, - "n_val_trials": 60 - }, - "33.0": { - "ll": -0.46013402212630056, - "bic": 1.7391369566970212, - "params": 12, - "n_val_trials": 60 - }, - "34.0": { - "ll": -0.15775083274153415, - "bic": 0.8614142737793483, - "params": 8, - "n_val_trials": 60 - }, - "35.0": { - "ll": -0.9019791154438975, - "bic": 2.41810991522111, - "params": 9, - "n_val_trials": 60 - }, - "36.0": { - "ll": -0.6988287517038543, - "bic": 2.0118091877410236, - "params": 9, - "n_val_trials": 60 - }, - "37.0": { - "ll": -5.215764313450042, - "bic": 11.386875691418574, - "params": 14, - "n_val_trials": 60 - }, - "38.0": { - "ll": -0.15827019250679308, - "bic": 1.067170221420971, - "params": 11, - "n_val_trials": 60 - }, - "39.0": { - "ll": -9.093160013875035, - "bic": 19.141667092268563, - "params": 14, - "n_val_trials": 60 - }, - "40.0": { - "ll": -0.5505335589905079, - "bic": 1.7152188023143309, - "params": 9, - "n_val_trials": 60 - }, - "41.0": { - "ll": -0.6931471805599454, - "bic": 2.068685121490241, - "params": 10, - "n_val_trials": 60 - }, - "42.0": { - "ll": -0.03818658163220474, - "bic": 0.6905248475977246, - "params": 9, - "n_val_trials": 60 - }, - "43.0": { - "ll": -0.2566775943479053, - "bic": 1.1275068730291258, - "params": 9, - "n_val_trials": 60 - }, - "44.0": { - "ll": -0.014115686405770073, - "bic": 0.6423830571448551, - "params": 9, - "n_val_trials": 60 - }, - "45.0": { - "ll": -1.3923237934445192, - "bic": 3.6035164993334585, - "params": 12, - "n_val_trials": 60 - }, - "46.0": { - "ll": -5.80904644630726, - "bic": 12.505200881095975, - "params": 13, - "n_val_trials": 60 - }, - "47.0": { - "ll": -0.654196189213667, - "bic": 1.922544062760649, - "params": 9, - "n_val_trials": 60 - }, - "48.0": { - "ll": -0.7278429240434184, - "bic": 2.138076608457187, - "params": 10, - "n_val_trials": 60 - }, - "49.0": { - "ll": -2.516544199928737, - "bic": 6.056674540412999, - "params": 15, - "n_val_trials": 60 - }, - "50.0": { - "ll": -0.2648277811880246, - "bic": 1.2120463227463991, - "params": 10, - "n_val_trials": 60 - }, - "51.0": { - "ll": -0.017992481330861034, - "bic": 0.650136646995037, - "params": 9, - "n_val_trials": 60 - }, - "52.0": { - "ll": -6.517603535813061, - "bic": 13.990554136144612, - "params": 14, - "n_val_trials": 60 - }, - "53.0": { - "ll": -3.7424536130553623, - "bic": 8.576732442703284, - "params": 16, - "n_val_trials": 60 - }, - "54.0": { - "ll": -0.03327067498916425, - "bic": 0.8854102624227486, - "params": 12, - "n_val_trials": 60 - }, - "55.0": { - "ll": -0.18151397721072574, - "bic": 0.7724624106436615, - "params": 6, - "n_val_trials": 60 - }, - "56.0": { - "ll": -0.44572083688292385, - "bic": 1.5055933580991627, - "params": 9, - "n_val_trials": 60 - }, - "57.0": { - "ll": -0.3145559330114052, - "bic": 1.2432635503561253, - "params": 9, - "n_val_trials": 60 - }, - "58.0": { - "ll": -0.19496575240082933, - "bic": 1.0040831891349737, - "params": 9, - "n_val_trials": 60 - }, - "59.0": { - "ll": -0.6874627873869775, - "bic": 1.98907725910727, - "params": 9, - "n_val_trials": 60 - }, - "60.0": { - "ll": -6.7971751734737, - "bic": 14.481458335428853, - "params": 13, - "n_val_trials": 60 - }, - "61.0": { - "ll": -0.634448645760262, - "bic": 1.8830489758538391, - "params": 9, - "n_val_trials": 60 - }, - "62.0": { - "ll": -3.315270557769687, - "bic": 7.654127256094899, - "params": 15, - "n_val_trials": 60 - }, - "63.0": { - "ll": -0.034837442693603206, - "bic": 0.6155874936834865, - "params": 8, - "n_val_trials": 60 - }, - "64.0": { - "ll": -1.437417761677142, - "bic": 3.488987207687599, - "params": 9, - "n_val_trials": 60 - }, - "65.0": { - "ll": -0.3961471414429022, - "bic": 1.2699678151450493, - "params": 7, - "n_val_trials": 60 - }, - "66.0": { - "ll": -1.9417634592719053, - "bic": 4.8388739830623, - "params": 14, - "n_val_trials": 60 - }, - "67.0": { - "ll": -0.5519074959164428, - "bic": 1.9226839042773058, - "params": 12, - "n_val_trials": 60 - }, - "68.0": { - "ll": -0.015576551067715322, - "bic": 0.6453047864687457, - "params": 9, - "n_val_trials": 60 - }, - "69.0": { - "ll": -9.984062973922558, - "bic": 20.7187557842525, - "params": 11, - "n_val_trials": 60 - }, - "70.0": { - "ll": -1.7731273085230563, - "bic": 4.569840757601638, - "params": 15, - "n_val_trials": 60 - }, - "71.0": { - "ll": -0.022467399266977953, - "bic": 0.659086482867271, - "params": 9, - "n_val_trials": 60 - }, - "72.0": { - "ll": -0.019189693099852398, - "bic": 0.7207701465700549, - "params": 10, - "n_val_trials": 60 - }, - "73.0": { - "ll": -0.6733385230570852, - "bic": 1.8925896544104504, - "params": 8, - "n_val_trials": 60 - }, - "74.0": { - "ll": -5.2713540637190555, - "bic": 11.36157703988253, - "params": 12, - "n_val_trials": 60 - }, - "75.0": { - "ll": -4.807157155009037, - "bic": 10.501422298499529, - "params": 13, - "n_val_trials": 60 - }, - "76.0": { - "ll": -6.521154346745241, - "bic": 14.202372986120077, - "params": 17, - "n_val_trials": 60 - }, - "77.0": { - "ll": -3.495607396987641, - "bic": 8.014800934530808, - "params": 15, - "n_val_trials": 60 - }, - "78.0": { - "ll": -0.6853655349428426, - "bic": 2.053121830256035, - "params": 10, - "n_val_trials": 60 - }, - "79.0": { - "ll": -0.49483861138212587, - "bic": 1.6038289070975666, - "params": 9, - "n_val_trials": 60 - }, - "80.0": { - "ll": -5.480667999927943, - "bic": 11.84844398833734, - "params": 13, - "n_val_trials": 60 - }, - "81.0": { - "ll": -0.0267432340789263, - "bic": 0.5993990764541326, - "params": 8, - "n_val_trials": 60 - }, - "82.0": { - "ll": -0.39907647986943745, - "bic": 1.4123046440721898, - "params": 9, - "n_val_trials": 60 - }, - "83.0": { - "ll": -0.1578481694630976, - "bic": 0.7933698711854402, - "params": 7, - "n_val_trials": 60 - }, - "84.0": { - "ll": -1.6188701908614258, - "bic": 3.8518920660561666, - "params": 9, - "n_val_trials": 60 - }, - "85.0": { - "ll": -0.6931471805599454, - "bic": 2.000446045453206, - "params": 9, - "n_val_trials": 60 - }, - "86.0": { - "ll": -4.457331872421273, - "bic": 9.66529358124993, - "params": 11, - "n_val_trials": 60 - }, - "87.0": { - "ll": -7.454578913079933, - "bic": 16.000983042752427, - "params": 16, - "n_val_trials": 60 - }, - "88.0": { - "ll": -0.8406289136047762, - "bic": 2.3636485875799025, - "params": 10, - "n_val_trials": 60 - }, - "89.0": { - "ll": -0.6700936274914094, - "bic": 1.954338939316134, - "params": 9, - "n_val_trials": 60 - }, - "90.0": { - "ll": -0.15014811386280094, - "bic": 0.9144479120589168, - "params": 9, - "n_val_trials": 60 - }, - "91.0": { - "ll": -0.15804357785131323, - "bic": 0.7937606879618715, - "params": 7, - "n_val_trials": 60 - }, - "92.0": { - "ll": -0.7156631428047312, - "bic": 2.0454779699427776, - "params": 9, - "n_val_trials": 60 - }, - "93.0": { - "ll": -0.42060347102041895, - "bic": 1.6600758544852579, - "params": 12, - "n_val_trials": 60 - }, - "94.0": { - "ll": -0.5870144502814761, - "bic": 1.7881805848962673, - "params": 9, - "n_val_trials": 60 - }, - "95.0": { - "ll": -0.26189508232580566, - "bic": 1.0697027729478914, - "params": 8, - "n_val_trials": 60 - }, - "96.0": { - "ll": -0.5821811053443826, - "bic": 1.7785138950220802, - "params": 9, - "n_val_trials": 60 - }, - "97.0": { - "ll": -4.353052703678598, - "bic": 9.45673524376458, - "params": 11, - "n_val_trials": 60 - }, - "98.0": { - "ll": -0.15760663336876923, - "bic": 0.8611258750338185, - "params": 8, - "n_val_trials": 60 - }, - "99.0": { - "ll": -0.25516805166811796, - "bic": 1.192726863706586, - "params": 10, - "n_val_trials": 60 - }, - "100.0": { - "ll": -0.026331871227161074, - "bic": 0.8032935788617072, - "params": 11, - "n_val_trials": 60 - }, - "101.0": { - "ll": -14.569135047116065, - "bic": 29.888899930639514, - "params": 11, - "n_val_trials": 60 - }, - "102.0": { - "ll": -15.6282886070649, - "bic": 32.07544612657422, - "params": 12, - "n_val_trials": 60 - }, - "103.0": { - "ll": -0.6931471805599454, - "bic": 2.2051632735643105, - "params": 12, - "n_val_trials": 60 - }, - "104.0": { - "ll": -0.6931471805599454, - "bic": 2.068685121490241, - "params": 10, - "n_val_trials": 60 - }, - "105.0": { - "ll": -0.7033064064296007, - "bic": 2.2937208013406565, - "params": 13, - "n_val_trials": 60 - }, - "106.0": { - "ll": -0.6931471805599454, - "bic": 2.000446045453206, - "params": 9, - "n_val_trials": 60 - }, - "107.0": { - "ll": -0.7841308295182343, - "bic": 2.182413343369783, - "params": 9, - "n_val_trials": 60 - }, - "108.0": { - "ll": -0.20407312375985734, - "bic": 1.0222979318530296, - "params": 9, - "n_val_trials": 60 - }, - "109.0": { - "ll": -0.6931471805599454, - "bic": 2.409880501675416, - "params": 15, - "n_val_trials": 60 - }, - "110.0": { - "ll": -5.480424282643867, - "bic": 11.71147840169512, - "params": 11, - "n_val_trials": 60 - }, - "111.0": { - "ll": -0.6931471805599454, - "bic": 2.136924197527276, - "params": 11, - "n_val_trials": 60 - }, - "112.0": { - "ll": -5.326668911863204, - "bic": 11.472206736170827, - "params": 12, - "n_val_trials": 60 - }, - "113.0": { - "ll": -4.950264703870696, - "bic": 10.855876472259881, - "params": 14, - "n_val_trials": 60 - }, - "114.0": { - "ll": -0.7002152752757415, - "bic": 1.878104082810728, - "params": 7, - "n_val_trials": 60 - }, - "115.0": { - "ll": -8.916480743645256, - "bic": 18.65183039973493, - "params": 12, - "n_val_trials": 60 - }, - "116.0": { - "ll": -0.3002106847103561, - "bic": 1.2145730537540274, - "params": 9, - "n_val_trials": 60 - }, - "117.0": { - "ll": -2.952187142033294, - "bic": 6.7232431965110075, - "params": 12, - "n_val_trials": 60 - }, - "118.0": { - "ll": -0.16254413459485562, - "bic": 0.9392399535230262, - "params": 9, - "n_val_trials": 60 - }, - "119.0": { - "ll": -0.39159176389509504, - "bic": 1.3973352121235052, - "params": 9, - "n_val_trials": 60 - }, - "120.0": { - "ll": -0.185006966630494, - "bic": 0.9841656175943031, - "params": 9, - "n_val_trials": 60 - }, - "121.0": { - "ll": -0.7888627499721003, - "bic": 2.1918771842775158, - "params": 9, - "n_val_trials": 60 - }, - "122.0": { - "ll": -7.8331893246386395, - "bic": 16.553486637758734, - "params": 13, - "n_val_trials": 60 - }, - "123.0": { - "ll": -0.6931471805599454, - "bic": 2.000446045453206, - "params": 9, - "n_val_trials": 60 - }, - "124.0": { - "ll": -0.6931471805599454, - "bic": 1.863967893379136, - "params": 7, - "n_val_trials": 60 - }, - "125.0": { - "ll": -0.011592611690944495, - "bic": 0.637336907715204, - "params": 9, - "n_val_trials": 60 - }, - "126.0": { - "ll": -0.758969499728329, - "bic": 2.132090683789973, - "params": 9, - "n_val_trials": 60 - }, - "127.0": { - "ll": -0.6918216859721991, - "bic": 1.8613169042036433, - "params": 7, - "n_val_trials": 60 - } - } - } - ] -} \ No newline at end of file diff --git a/analysis/finetuning_SEQ/bic_violin_plot.png b/analysis/finetuning_SEQ/bic_violin_plot.png deleted file mode 100644 index 883f5dba..00000000 Binary files a/analysis/finetuning_SEQ/bic_violin_plot.png and /dev/null differ diff --git a/analysis/finetuning_SEQ/ll_comparison.png b/analysis/finetuning_SEQ/ll_comparison.png deleted file mode 100644 index 79c78c0b..00000000 Binary files a/analysis/finetuning_SEQ/ll_comparison.png and /dev/null differ diff --git a/analysis/finetuning_SEQ/ll_violin_plot.png b/analysis/finetuning_SEQ/ll_violin_plot.png deleted file mode 100644 index ce3cf19b..00000000 Binary files a/analysis/finetuning_SEQ/ll_violin_plot.png and /dev/null differ diff --git a/analysis/finetuning_SEQ/model_data_128p_0.pt b/analysis/finetuning_SEQ/model_data_128p_0.pt deleted file mode 100644 index df9f0a67..00000000 Binary files a/analysis/finetuning_SEQ/model_data_128p_0.pt and /dev/null differ diff --git a/analysis/finetuning_SEQ/result_data_128p_0.json b/analysis/finetuning_SEQ/result_data_128p_0.json deleted file mode 100644 index 7ae4eb16..00000000 --- a/analysis/finetuning_SEQ/result_data_128p_0.json +++ /dev/null @@ -1,9362 +0,0 @@ -{ - "dataset": "data_128p_0.csv", - "best_params": { - "dropout": 0.31905877051758935, - "learning_rate": 0.0003638666906537081, - "hidden_size": 22, - "embedding_size": 9, - "n_steps": 62 - }, - "best_val_loss": 0.3835820792793909, - "final_train_loss": 0.3158555030822754, - "sindy_bic": 4.447191774137533, - "sindy_ll": -1.865074178983563, - "participant_equations": { - "0.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8089341211556266, - 0.11340760680137527, - 0.20601336749385474, - -0.32382421805123096, - 0.0, - 0.09821141523925904, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.2809159282752134, - 0.3455758166847831, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9564620474980643, - -0.5499402818875253, - 0.0, - 0.5742904581020674, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "1.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0477199154757832, - -0.11513825222138839, - -0.4052466764712587, - 1.054925771071844, - 0.0, - 1.7557952797554217, - -1.8080813948515788, - 0.0, - -0.8900641021845428, - 0.21777576703312812 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.7995004571057072, - 0.4312862082306291, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.502331976855071, - 0.24834972205978637, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.27851193907038674, - 0.1846409379555142, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "2.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9060767142012686, - 0.0, - 0.1412830492120939, - -0.1511799140357828, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7767850142337076, - 0.3127878746924153, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6551783196422482, - 0.1995012046454771, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11389156309574, - 0.13984208306434473, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "3.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9298652151188163, - 0.0, - -1.4242169514108691, - -0.1603926044213218, - 0.0, - 0.0, - 0.0, - 0.0, - 3.5003473331585644, - -1.956218647835203 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.0512557700154992, - 0.3155119210278755, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6503558648217549, - 0.19775522163469725, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.19011921414220298, - 0.19403273086913303, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "4.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9040568741557642, - 0.0, - 0.13628340218537544, - -0.14659106115053694, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7701216752834475, - 0.2821838709679916, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8410733046827626, - 0.10177688066820052, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10753955177642634, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "5.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8092461735718975, - 0.13618785206024753, - 0.2859278706455841, - -0.33783375015956724, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6026496319164013, - 0.3257165250315524, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6870805728397366, - 0.18534551838150654, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10738648815673041, - 0.13490109084724278, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "6.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0590778324789176, - -0.5488255605387732, - 1049129582586.5583, - 1.5402256230140159, - 0.453283957031707, - 2.7872977982911764, - -2.9154627406207223, - -1049129582583.5673, - -9.33468063032711, - 4.86375251196924 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -2.170653968621427, - 0.39709699857928815, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3788022703447173, - 0.227194880376882, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.46044909154723385, - 0.19102658191954355, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "7.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7669053982231876, - 0.1851714109707287, - 0.20872734981026414, - -0.2697468525626794, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.1370317510569212, - 0.3493281930979261, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.865273209340505, - 0.08737176614700681, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "8.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.920473814461001, - 0.0, - 0.32692356677334106, - -0.35376336298736727, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3796954101692545, - 0.33096526446985985, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3414903933934429, - 0.3167338111142038, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3494767238086839, - 0.2997388053501008, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "9.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8764540864844208, - 0.0, - -98610941951.46825, - -1.1099014282226562, - 0.0, - 0.23923873901367188, - 0.0, - 98610941958.96725, - -13.83993911743164, - 7.227840423583984 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.35099459482043566, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6022022377555306, - 0.2217056157329397, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.13553795181152994, - 0.15646280318540304, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "10.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8838860588808123, - 0.0, - -140459445735.27393, - 0.0, - 0.0, - 0.16522598266601562, - 0.0, - 140459445735.4332, - 0.49228668212890625, - -0.8088760375976562 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.06764217137190212, - 0.2716319572189042, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.690377898699915, - 0.18371129641824605, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1052785288938635, - 0.1330870651888586, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "11.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9219329859597614, - 0.0, - 0.37748523051440125, - -0.40383009657139324, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5554563970010464, - 0.3691063331847558, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5125614455622192, - 0.24512113884374795, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.29396787440079764, - 0.18820958735207388, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "12.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9107648521911089, - 0.0, - 0.1821877990139196, - -0.197871655969123, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.9070395220605144, - 0.32320752521110313, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7806904335671615, - 0.13587282304371984, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08583840662031693, - 0.11607602512029801, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "13.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9156140556284785, - 0.0, - -2.256102519858711, - 0.07821403228471902, - 0.0, - 0.0, - 0.0, - 0.0, - 4.909900528862892, - -2.765316815014671 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.5813663444569455, - 0.31541154368466723, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7111205781794815, - 0.17309615033032516, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1051643457107793, - 0.13346798513812697, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "14.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.903868652632916, - 0.0, - 0.11174949229705082, - -0.12267253168567738, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.6626977032192946, - 0.3581635778374343, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.487471844885702, - 0.2545163575293214, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.18469717362217788, - 0.17290189469925799, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "15.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8425151715056521, - 0.09714116023613001, - 75347160967.66234, - -0.882808980654814, - 0.0, - 0.1067651249772804, - 0.0, - -75347160963.50313, - -6.97671357026941, - 3.5466555315686663 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.12663525895752412, - 0.27276354560632277, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4145053452777214, - 0.2059840150934517, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.35981544206588567, - 0.17911962744425972, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "16.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0630314692096583, - -0.12638249096422324, - -1.525350789357412, - 1.0902983950012748, - 0.0, - 1.622426981913189, - -1.63847913347079, - 0.0, - 1.6372417339299439, - -1.2632403731961774 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.9708107286239895, - 0.37362612252808935, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6793140122355049, - 0.1867579200271304, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1476808165484253, - 0.1687598600743781, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "17.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9128818835592186, - 0.0, - -2.339636623400976, - 0.11991690011901945, - 0.0, - 0.0, - 0.0, - 0.0, - 5.051489304982689, - -2.8651196559139733 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.5202002038509106, - 0.28181789311244093, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8502626668022097, - 0.09522450735921584, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.12163443252211434, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "18.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9141097111409507, - 0.0, - 0.23219064618359858, - -0.22046179741802108, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.013594436702105, - 0.31977359879217643, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6270576710392365, - 0.2121007805547354, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.12350817064557021, - 0.14766121995667367, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "19.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9355137482031078, - 0.0, - 0.8672222153946857, - 0.0, - 0.0, - 0.7512865471532948, - -0.7820770825957233, - 0.8672222153946866, - -3.5081534464557653, - 1.75728825707175 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.4870014283073005, - 0.3247445117679172, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.48609345542317556, - 0.21463889042556286, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3314204391099715, - 0.15620020460616288, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "20.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9040462462172915, - 0.0, - 0.12739919435881525, - -0.13967353740225352, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7035028841795882, - 0.30268675452562066, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6447436063546041, - 0.20163055535134813, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.16328671492261493, - 0.1774762160879803, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "21.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8306507317342352, - 0.09592514611829758, - 0.23733075397502992, - -0.3565216874883592, - 0.0, - 0.09990121933700619, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.2152888933353043, - 0.33495982385699485, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7784017967706409, - 0.13688609160831014, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08607870790770233, - 0.11643785015464989, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "22.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.817990782569329, - 0.12550702472756178, - 0.32815622157529045, - -0.38102514935623577, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4357971067518709, - 0.30900481746568625, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8477406625002752, - 0.09783740240753555, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08200915490306211, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "23.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9375886839813191, - 0.0, - 188936795305.0317, - 0.0, - 0.0, - 0.6681137084960938, - -0.6971702575683594, - -188936795303.97266, - -2.0911178588867188, - 1.0130462646484375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3626090852605524, - 0.33733844085674647, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.24983603554761855, - 0.24679248546379465, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5253086870688707, - 0.18581530689053027, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "24.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8031934121443728, - 0.14211991935050586, - 0.271028920228687, - -0.32284800551778137, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6933385193162749, - 0.30836777411028443, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8142300903300306, - 0.11789927250619779, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10087856064637882, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "25.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8849589292065132, - 0.0, - 689120780053.5784, - -1.98162841796875, - 0.0, - 0.2923736572265625, - 0.0, - -689120780040.5859, - -24.537445068359375, - 13.250579833984375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.272673541990499, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8059253674671923, - 0.12101693079346577, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0940506945409952, - 0.12583710305436682, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "26.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8160176027063821, - 0.12741005212697493, - 0.3289213206339354, - -0.38273677378588855, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.44160482850155514, - 0.29657329840641566, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7579844645631231, - 0.14897339703430693, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.07883420754987486, - 0.10752835176754313, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "27.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8484568175716345, - 0.09932872928382427, - 0.6343772900193452, - -0.5920694061759588, - 0.0, - 0.0, - 0.0, - 0.6343772900193576, - -1.5485508566286186, - 0.812754213563406 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.17960694392128565, - 0.27040271381895964, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2654845812794463, - 0.4226948323665731, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.32508127820173116, - 0.3701122609184984, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "28.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8402360296678917, - 0.1052035463829933, - 0.9240916148285166, - -0.6871065882698939, - 0.0, - 0.0, - 0.0, - 0.9240916148285149, - -2.6988681798457104, - 1.47902089172274 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.24750631974787704, - 0.3211995357544704, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8191461954246513, - 0.11484738857443909, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08870870378086693, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "29.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7871985408113602, - 0.1513581016647401, - 0.41618934676526526, - -0.2119486292205559, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - -0.25773873205227343 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5817763602408234, - 0.3153322523379826, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8278607629777167, - 0.10995681159803627, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10060377747868196, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "30.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7658677272322056, - 0.1832522040827223, - 0.21109743137020895, - -0.27360012720898685, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.1097754465475669, - 0.3329032006991524, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9470382240263723, - -0.6398209569298906, - 0.0, - 0.6752512789349996, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "31.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9018032406068042, - 0.0, - 0.10672842400785587, - -0.11750278301300576, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.6670206416048864, - 0.3455810015032202, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5236009315389077, - 0.24450028801846263, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.20307578575870205, - 0.19645579698263624, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "32.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8182269465078948, - 0.12610624230593892, - 0.30689886349720474, - -0.35692436606437083, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5111654945102262, - 0.2757273265641907, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6060237425817128, - 0.2165048397665036, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.18667187528311663, - 0.19065102202263584, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "33.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9539147124178615, - 0.0, - 2589820358397.256, - 0.0, - 0.0, - 0.5974794796564887, - -0.6228895647194823, - -2589820358396.704, - -0.9453748679049722, - 0.35888303033141966 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.6011067034052917, - 0.33281295466761573, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8400524670062408, - 0.10190196554103605, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09982961201603753, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "34.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.920401403144277, - 0.0, - 0.3253446483535913, - -0.3507025961956667, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3714543944963296, - 0.3380550694415202, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8196848651515077, - 0.11488481462526388, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0949579596308467, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "35.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9216853330999074, - 0.0, - 0.34221347075743486, - -0.3677963668026377, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.443189842459439, - 0.3184074356095807, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5185787539168608, - 0.24370085393935925, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2422094338192259, - 0.21337608480736853, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "36.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9036685166642366, - 0.0, - 0.11781504113351224, - -0.12825101365309488, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7126643981908923, - 0.31485760426226994, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7004585559054812, - 0.17617165313974242, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1334676484736532, - 0.1586241676607989, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "37.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0360070769749326, - -0.10592940812058345, - -1.1909440799129016, - 0.888516529203052, - 0.0, - 1.3924461115147189, - -1.4089004423711073, - 0.0, - 1.233174046825803, - -0.9778020121780481 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.6255326253547182, - 0.34439746067074184, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5512639764794026, - 0.23513641580005457, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.24043117149578727, - 0.21373259760239255, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "38.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.873142077629804, - 0.0, - 2.067739347227096, - -0.5344113106032348, - 0.0, - 0.21181752456641717, - 0.0, - 2.06773934722707, - -7.296069490477975, - 3.499062955896101 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.29740559041362563, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.871292473761148, - 0.08345970418426506, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.052356710858409906, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "39.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9340757460736968, - 0.0, - -672907344300.9565, - 0.140533447265625, - 0.0, - 1.004150390625, - -1.0649871826171875, - 672907344303.3804, - -5.346038818359375, - 2.787933349609375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.341083316458518, - 0.30753158781542944, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5495882459507144, - 0.23663226887637206, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.22315409274452383, - 0.20695830154883765, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "40.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.904405539824535, - 0.0, - 0.1282496749687341, - -0.13847221446548272, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7070410601613712, - 0.29879464528376815, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4942025267833547, - 0.20414605306288863, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3401798696681548, - 0.1694539936509874, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "41.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7921079905829513, - 0.15220730314533562, - 0.24575878918250274, - -0.29739284068458166, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.815777060423507, - 0.2798740609336696, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6394718067568772, - 0.2032871379548359, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1649482285750165, - 0.17887237159201083, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "42.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7978384596338179, - 0.14435068514790345, - 0.2687621093033661, - -0.3217597292530386, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6753162654975243, - 0.2936861075171478, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8875644252580583, - 0.0725350520701234, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08003167665447113, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "43.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8158564060671721, - 0.12618500385068238, - 0.3421418522633384, - -0.395407210126546, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.40953379247219635, - 0.2837916335527538, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.853868863063695, - 0.09420471142602646, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09098997217733998, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "44.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9182785027883976, - 0.0, - 0.31550880047397567, - -0.34136125437574527, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.29887585763833, - 0.34240994370797073, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.78172095382504, - 0.13528152968903165, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08714727424951334, - 0.11767467876421142, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "45.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8140879495340637, - 0.12398094560979524, - -3.0365647839498613, - 0.08548202223944129, - 0.0, - 0.0, - 0.0, - 0.0, - 6.731142452546403, - -3.830178753678412 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.34950823284103183, - 0.26039719209718026, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7404656506329047, - 0.15739027776104808, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1005975215683184, - 0.13000543932264574, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "46.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9392292080825988, - 0.0, - 1.7876296442101127, - 0.05843202953370413, - 0.0, - 0.8530670640688176, - -0.8992269757981977, - 0.0, - -3.7471112697533644, - 1.8924054983871457 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5367796266072866, - 0.32101053942568913, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4477623389861437, - 0.20543146805458098, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.36230040110271566, - 0.17857491480460466, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "47.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7744876404555461, - 0.17398150180244373, - 0.22193038977217683, - -0.28215611359071796, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0528782952170006, - 0.2933728321535335, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8320304737885282, - 0.1069097738723335, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10989429881738026, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "48.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7921224219681904, - 0.1522427576106053, - 0.24792032846151632, - -0.2970768009074618, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7904086172422617, - 0.28490393918556817, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8066156872896104, - 0.12147034975638277, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.07830614228642635, - 0.10892446234097908, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "49.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0325776362364143, - -0.09005648462919341, - 0.0644449355563064, - 0.905370270004736, - 0.0, - 1.6536823048343066, - -1.7120916010668914, - 0.0644449355562815, - -1.8018099693265472, - 0.7575148700513701 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.9851695870885733, - 0.3833303519012002, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2387854428201632, - 0.24153320701111747, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5270493765227668, - 0.20287262924484245, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "50.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8123965109192359, - 0.1296640625684627, - 0.31572052854473714, - -0.36814980965750027, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.486591337306275, - 0.2719863716884861, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.882649924783439, - 0.07614188277997537, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.05187159844695209, - 0.05043597632244268, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "51.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.914600876662194, - 0.0, - 0.2725571609384932, - -0.2953966956276308, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.109142395079342, - 0.3034376811852648, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6174361295217055, - 0.2115552695835219, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.20157594920033295, - 0.19914797844010412, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "52.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0358498750209508, - -0.10902050272995617, - -1.7407584545313113, - 0.8377110066437552, - 0.0, - 1.2203164400943711, - -1.2039001541531875, - 0.0, - 2.5891505140458686, - -1.754991906205117 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5403247102125592, - 0.34252378900080166, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.47481468697718776, - 0.20584714068598828, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.40705173596206357, - 0.1882764659947515, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "53.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0579448805088931, - -0.6098814609701063, - -198644753954.67084, - 1.5809103572373222, - 0.5176826509860251, - 2.951130631523717, - -3.095517398222938, - 198644753958.38806, - -11.015497425221524, - 5.790960974346373 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -2.201269368734398, - 0.4070092390822665, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.448497280581199, - 0.20952836313804213, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3907952447417064, - 0.18803299571630197, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "54.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8321567825646775, - 0.1125608654330382, - -156923960025.36154, - -0.6780981336625547, - 0.0, - 0.0, - 0.0, - 156923960027.153, - -2.5691778204925177, - 1.3919708133208042 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.2844638376988913, - 0.3106249653461233, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9494026442918571, - -0.6543642939471449, - 0.0, - 0.6893853751546168, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "55.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8921454807048134, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.2999315168690771, - 0.3423783567844682, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8038830007819603, - 0.1237021814113645, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10344673973304458, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "56.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9074388371938122, - 0.0, - 0.20828771946351402, - -0.2232984566344421, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.9211865285842592, - 0.2822049379117276, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7981677244020721, - 0.12542143765963742, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09852327593761581, - 0.1299305247911011, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "57.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9066976932117116, - 0.0, - 0.15491978638214482, - -0.16446737077455895, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.8280533394787315, - 0.29223685692032003, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6635645404233753, - 0.19394808444186534, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.15976284757134443, - 0.17710564435722914, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "58.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9103427276503987, - 0.0, - 0.185276198460096, - -0.1988256152970257, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.9170818909333498, - 0.29041828623299243, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7074494423995443, - 0.1741453059686569, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11846833299304989, - 0.14564438159036966, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "59.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9081081844538158, - 0.0, - 0.2134461568309586, - -0.19435941163373516, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.9005484345119742, - 0.2885017354198194, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7669148262010885, - 0.14272973413728066, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10607428753934918, - 0.13659417622909129, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "60.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9327828160054, - 0.0, - 1.7076836482798412, - 0.08828079859538707, - 0.0, - 0.860469912646371, - -0.905343932435793, - 0.0, - -3.664198800275125, - 1.8581877655129122 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.2919534661383014, - 0.3072103823507204, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.666130190620653, - 0.1919025335515219, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.162800340025651, - 0.17830590587121492, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "61.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8953987015434581, - 0.0, - 0.05308490161374877, - -0.05757229970196205, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.45252374594153727, - 0.273668523336084, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7895153819679596, - 0.13189976074054496, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.07574256886705186, - 0.105411021975373, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "62.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.044699388515029, - -0.10352156637772605, - -0.2746096763465435, - 0.9967577704792192, - 0.0, - 1.6667480704059292, - -1.708669965818349, - -0.27460967634653866, - -0.39464592905169604, - -0.08639128969755305 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.9072166699080226, - 0.3586608154548234, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2761051109434239, - 0.4135254420699714, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3549816900151385, - 0.3280794178466653, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "63.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9138273593392997, - 0.0, - 0.3158178788710792, - -0.34030094782388765, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.2456430822376923, - 0.30993568756502643, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8448681972602029, - 0.09891076595132926, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11385393307864435, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "64.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9215842628773185, - 0.0, - 0.3513555870168769, - -0.37553230848553965, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5036586247749457, - 0.32242181728788183, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5866620010946968, - 0.22491472123174808, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.17677823444754803, - 0.1841393982637733, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "65.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8930009527918013, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.3323567812828522, - 0.27271467621731055, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6987816447070374, - 0.17866411879878777, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11896963767329904, - 0.14588720044436868, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "66.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9368754340188905, - 0.0, - 2574559878720.6436, - 0.114501953125, - 0.0, - 0.87164306640625, - -0.91864013671875, - -2574559878718.8354, - -3.9254150390625, - 1.9927978515625 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.250932382531707, - 0.3011612080575552, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6747231452721305, - 0.1892853170337215, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.14001920443060464, - 0.16242213334096728, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "67.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8406118167834715, - 0.10280588578003663, - -34268006935.422462, - -0.5813169857829432, - 0.0, - 0.0, - 0.0, - 34268006936.539597, - -1.2538635917983174, - 0.6587811494630149 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.19013523995241285, - 0.27032510508722907, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.829767179149283, - 0.10875070308296833, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0899823331565131, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "68.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9280171779196423, - 0.0, - 0.4189792657162195, - -0.4552078764840516, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.7301801845077822, - 0.3798934930664, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5907312417605783, - 0.2205158013819672, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.25379014007973477, - 0.21929638947738017, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "69.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.927180065584349, - 0.0, - -1.2713796616907969, - -0.17553448988697296, - 0.0, - 0.0, - 0.0, - 0.0, - 3.235675927116658, - -1.8318047725390065 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.0545103579219794, - 0.29888505819829764, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5406715647238793, - 0.23843853151114694, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.25725827285473424, - 0.22002641381104968, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "70.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0263453407802885, - -0.09392227804916767, - 240177331786.6709, - 0.8005577081424579, - 0.0, - 1.4267819278166871, - -1.457706339002204, - -240177331787.07672, - -0.3118288307351178, - -0.12098848919870603 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.7639729244644395, - 0.3423844071596998, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5951147179434662, - 0.22072496586021517, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.20810012545162115, - 0.20239066263569078, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "71.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9120063077348072, - 0.0, - 0.231341908313462, - -0.25082005167579935, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.022318379011888, - 0.3054230500287215, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7552787169227764, - 0.14994299251943363, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09105987005279786, - 0.12074145428040979, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "72.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.730978594827201, - 0.1949531202191529, - 0.23675188056880808, - -0.2198414021115558, - 0.0, - 0.0, - 0.0, - 0.0, - -0.06982404054564625, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.6904434010520182, - 0.3552106541940103, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9508729380549961, - -0.6503482990379729, - 0.0, - 0.6840163082995138, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "73.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9047293088433058, - 0.0, - 0.09450124386320348, - -0.10631860884717531, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.6601270248872294, - 0.29263597202582114, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8277005598189586, - 0.10935809030724457, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09919472322872028, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "74.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9068384275775774, - 0.0, - 187745326444.22113, - 0.7970657348632812, - 0.0, - 0.0, - 0.0, - -187745326451.04688, - 13.927497863769531, - -7.932945251464844 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.19497060327988858, - 0.25419591533346714, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6091432087481383, - 0.2161740489449754, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.17586977684535995, - 0.18482912086573375, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "75.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8455875741523508, - 0.09765842739034908, - 0.6945954208409981, - -0.595992700194041, - 0.0, - 0.0, - 0.0, - 0.6945954208409931, - -1.8250277082746686, - 0.9771698468100352 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.27749953420899104, - 0.2574968596882751, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7968086699296706, - 0.12663417698420812, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09079485070340336, - 0.12223653956426478, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "76.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0210152516462012, - -0.07959815525113788, - -0.48011179092661277, - 0.7053643945740159, - 0.0, - 1.2625290351447125, - -1.2867375929831675, - -0.4801117909265975, - 0.9764080501189464, - -0.7571029700367076 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.6783319713393514, - 0.35591708703685715, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.36854450010499157, - -0.3786555258897158, - 0.0, - 1.2874803572319349, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.42036140785254095, - -0.5716211486858289, - 0.0, - 1.4670635128428227, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "77.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.0091972436393037, - -0.07671307281145402, - 0.11602689184118048, - 0.7349140176496685, - 0.0, - 1.3924687041281862, - -1.4295556779004002, - 0.11602689184114864, - -1.6264571532181025, - 0.6386551371892153 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5077071958584307, - 0.34998652475245123, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4023571315548413, - 0.20546028434772054, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3506420146271222, - 0.17712449784581122, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "78.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7724747770399859, - 0.1732835788985195, - 0.23324302503883054, - -0.2950782548431381, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.953023806071973, - 0.36236403007056045, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8540067929166847, - 0.09458557144196869, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.052364222361483984, - 0.05149700041894226, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "79.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.822902824492103, - 0.10194469631441799, - 0.21672313107380653, - -0.33700475461056933, - 0.0, - 0.09956331605688587, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.2972536548977742, - 0.32676180222538637, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8880336109426606, - 0.07298582912048394, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "80.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.927614082366789, - 0.0, - 1.5228692183805108, - 0.05868188352634318, - 0.0, - 0.7370802527926004, - -0.7646797770603453, - 0.0, - -3.1637999579009204, - 1.5623603125970504 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.1983061753029072, - 0.31601138255369865, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6913108073819876, - 0.18029357196554044, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.16243561433128292, - 0.1798412847911055, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "81.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.831303669508471, - 0.08976810750456016, - 0.23776725863940007, - -0.3662957019152169, - 0.0, - 0.10273627504473595, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.2299599189405734, - 0.3168537240231187, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9395531867048701, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "82.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9032619686194999, - 0.0, - 0.13731764564436003, - -0.14867742082966634, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7388757196406435, - 0.290106495445708, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7117069629047549, - 0.17050078978882893, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.15176192361491325, - 0.17293744324877522, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "83.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8953910187351299, - 0.0, - 0.0, - -0.05106840030437376, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.4540269551318304, - 0.2870026034901833, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8404544429673392, - 0.10216574014563752, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08688525665638738, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "84.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9206196132843891, - 0.0, - 0.34853877573967235, - -0.37496162883370626, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3872219873555838, - 0.35803374262264276, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6467304293997095, - 0.19719323928927165, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.23902871767111974, - 0.21769519170490859, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "85.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9203181646624846, - 0.0, - 0.32768307530593793, - -0.3530333409316095, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.4150893093254884, - 0.34607409475351736, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6182325060999361, - 0.21067760341387537, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2086138753732394, - 0.2017502438424263, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "86.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9320456171235788, - 0.0, - -1.0933805406012913, - -0.2602468005034114, - 0.0, - 0.0, - 0.0, - 0.0, - 3.028212449232771, - -1.719938137332866 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3327887844538107, - 0.30925261629025064, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4794139261373958, - 0.19830997038413725, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3429719415680218, - 0.1731866890650272, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "87.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.042077825450635, - -0.11291227410951588, - -0.22932742417346336, - 1.0243813822139582, - 0.0, - 1.6495820556639813, - -1.6832541930963216, - -0.2293274241734684, - -0.6235645327225877, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.7017623569411384, - 0.36723865228199826, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3632497786123892, - -0.5628271549357344, - 0.0, - 1.6764659985180668, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3288968614714213, - -0.4306466994891733, - 0.0, - 1.5512727541754603, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "88.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8180060469092867, - 0.12547429895418222, - 0.33227507017670976, - -0.3829485725283484, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4278569365180797, - 0.24915156303711966, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6066104489143511, - 0.21529137366020198, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.211239722293875, - 0.20324203455810164, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "89.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8115215313950885, - 0.13029120897343804, - 0.30869208511680457, - -0.3585164328329851, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5045796247776256, - 0.28453289059325276, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7984127155013834, - 0.12678099010296986, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11386329340893998, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "90.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9192488464260348, - 0.0, - 0.3197789155969642, - -0.34422855421949006, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3161273601979604, - 0.32892373045440954, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5579316592157179, - 0.2052099647592282, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3341477657823563, - 0.20529055195819226, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "91.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8889303821167526, - 0.0, - 0.05240969134954157, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.3994824561562693, - 0.2909450633033168, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8548848000912888, - 0.0935208376174773, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.07245891600541658, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "92.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8210162872980624, - 0.12262657798245921, - 0.3434401550622593, - -0.39530387751512963, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4016806963374341, - 0.2702714694117042, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7983526962442984, - 0.1268915078950177, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11681137475534346, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "93.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.845718440134656, - 0.09994569810629478, - -91674796951.92094, - -0.5810374705396012, - 0.0, - 0.0, - 0.0, - 91674796952.99011, - -1.1519663927392227, - 0.606267422341632 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.19449552292708755, - 0.2891824480650243, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8393421516181772, - 0.10247936603312796, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0932138844727889, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "94.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7917832477800051, - 0.14916504590837823, - 0.2599773387386434, - -0.3106789139157773, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7372913891504848, - 0.2655692951192874, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8393280737153345, - 0.10209684797775795, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10922932116955049, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "95.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9147917795629283, - 0.0, - 0.32213040175714075, - -0.34972211636197115, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.322123444176878, - 0.3477297977993832, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8512191391390849, - 0.09458544703105967, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1275682824416436, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "96.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9056306325183139, - 0.0, - 0.12823265382560367, - -0.1388182594073425, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.727629325185017, - 0.3270989786478136, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.46882724734635, - 0.19992441606572536, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.36561363398621377, - 0.1782998232976784, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "97.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9286095749085033, - 0.0, - -1.4000470686864481, - -0.17854318873825398, - 0.0, - 0.0, - 0.0, - 0.0, - 3.505017141352778, - -1.9700424297811248 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.0970086191037742, - 0.31324492459813147, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5570006398968758, - 0.23236871392758196, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.22393862380989327, - 0.2067991955814882, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "98.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9070659342168521, - 0.0, - 0.1602066427483277, - -0.17011409164137564, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.8315717110772861, - 0.30653575840050595, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8567517031353509, - 0.0921323875040205, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09257564233121227, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "99.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9036829312823246, - 0.0, - 0.0, - -0.09061107926896002, - 0.0, - 0.0, - 0.0, - 0.0, - 0.24602035156769086, - -0.17262079555866355 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.6396222569183413, - 0.2890822884324698, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7385871372319042, - 0.15826952891222246, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11643215906993555, - 0.14505381887727245, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "100.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9243950584563855, - 0.0, - -0.5610747408355617, - -0.1728320159623112, - 0.0, - 0.0, - 0.0, - -0.5610747408355597, - 2.8815541021138507, - -1.6241912530973373 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.0294670548536715, - 0.36289414238560747, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8084220056945884, - 0.12198423420254921, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.08448578378374805, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "101.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9284705014506847, - 0.0, - -1.075117640688253, - -0.2425547709074336, - 0.0, - 0.0, - 0.0, - 0.0, - 2.9325798141997534, - -1.6578597702415823 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.2485176205116848, - 0.34604317614333685, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7521096701902149, - 0.14922675945872552, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.14629151538798096, - 0.16914257892511778, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "102.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8819023882702182, - 0.0, - 503860442720.0281, - -1.892120361328125, - 0.0, - 0.3012237548828125, - 0.0, - -503860442707.5254, - -23.538848876953125, - 12.649261474609375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.25521680466383595, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7641985866737344, - 0.14453124601428746, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.10910882919714565, - 0.13944631446921155, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "103.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8867212435175573, - 0.0, - 1057894731038.9102, - 0.51019287109375, - 0.0, - 0.0, - 0.0, - -1057894731043.5533, - 9.41864013671875, - -5.2977294921875 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.10230018489626831, - 0.3327687867259597, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5707952499673021, - 0.22899287715510175, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.23838500035804253, - 0.21478408014803524, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "104.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7932510475851282, - 0.1508219869111052, - 0.25177562846358953, - -0.30011279646124217, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7637308834120338, - 0.3034565108754381, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6405536270344765, - 0.2053714438335643, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.13044527571676443, - 0.1534572854269058, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "105.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9548944872825347, - 0.0, - 3361911610972.112, - 0.0, - 0.0, - 0.5503772085748957, - -0.560564042328825, - -3361911610971.9106, - -0.12433011405042642, - -0.1197410232766933 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5510236378209943, - 0.3236749987573267, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3340164857769468, - 0.2709689577694372, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3909863847430301, - 0.2580845161597743, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "106.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.921121557789304, - 0.0, - 0.27993315583344686, - -0.30181976913066655, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.273973072622756, - 0.3138414203445311, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.4607012767660696, - 0.23936493663280542, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.27156049008763133, - 0.1794131750315666, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "107.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9034123655666084, - 0.0, - 0.0704168218023672, - -0.07987824204609563, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.5862792112243336, - 0.26999329401035166, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.650766582439831, - 0.19993468102625647, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.14698531657242203, - 0.16695921305952335, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "108.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9121885759105347, - 0.0, - 0.12523433158329078, - -0.13561732755815323, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.8023792722936492, - 0.29663778796759144, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.37931139434015, - 0.20183257603692778, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.49234298296641044, - 0.16798026700617907, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "109.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9355483909004468, - 0.0, - -78451760400.2414, - 0.0, - 0.0, - 0.7076339721679688, - -0.7417430877685547, - 78451760401.57373, - -2.734760284423828, - 1.3610496520996094 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.3512060964589927, - 0.3502114468285055, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.36599122795746586, - -0.3807441642928708, - 0.0, - 1.301092435714721, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.41413663353954244, - -0.5354246540941272, - 0.0, - 1.4211893707780054, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "110.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.928524018452841, - 0.0, - -1.131914115581406, - -0.1667081118791651, - 0.0, - 0.0, - 0.0, - 0.0, - 2.900103860757111, - -1.6394178712146528 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.089993642324377, - 0.29693992061592683, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.46884471526323496, - 0.19664699216533243, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3835116772337433, - 0.17562957365220017, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "111.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8280918358145355, - 0.09730578980940388, - 0.24010767979228198, - -0.3578665045969154, - 0.0, - 0.09555466331806778, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.1897969638708845, - 0.3437708789784242, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7520932149528822, - 0.15208800021815572, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09006426683540288, - 0.1199363291499574, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "112.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9125961276227743, - 0.0, - 620692228029.2899, - -2.08929443359375, - 0.0, - 0.0, - 0.0, - -620692228019.292, - -19.7098388671875, - 11.787689208984375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.19333416810076462, - 0.2796981060908897, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.540609108180387, - 0.23691282164267424, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2571673460566945, - 0.21790026981092014, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "113.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 1.045350858554072, - -0.10576838251486406, - -0.23242093394231797, - 1.0187579778860416, - 0.0, - 1.7047422776865118, - -1.749340304703201, - -0.232420933942354, - -0.6309907988676797, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.8436927733019872, - 0.36562002713468267, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5435342214471173, - 0.2196730951227794, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.31935061941480425, - 0.19466018289738138, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "114.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8932041471833452, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.42280438165710876, - 0.2690085905386638, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6580142336683861, - 0.1959944655759599, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.16878501858489475, - 0.18299325681664919, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "115.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8934202385317758, - 0.0, - 8.010716944421823, - -2.5500963724874546, - 0.0, - 0.3165337238545396, - 0.0, - 8.01071694442146, - -30.362461765826914, - 16.586875379366067 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.07601472105916891, - 0.24720254804938313, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8634977875369838, - 0.08784539798530754, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.09810223239401242, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "116.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8142942660646939, - 0.12933028702119545, - 0.308829866743677, - -0.35976227468346966, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.5013405854135543, - 0.29485051975205095, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8889998471430356, - 0.07218672046235887, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.05603779716725275, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "117.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8788038338782466, - 0.0, - 802240580066.4767, - -1.494537353515625, - 0.0, - 0.271820068359375, - 0.0, - -802240580056.218, - -19.18853759765625, - 10.171966552734375 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.0, - 0.26062743816045253, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6135865934450565, - 0.21328341932569075, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.19132958845298403, - 0.1937854581325363, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "118.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9153983426625455, - 0.0, - 0.21267871728482435, - -0.2315535128224619, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.9984508429719448, - 0.2964979800856474, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.43283423573978413, - 0.20465725455608907, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3766796015185459, - 0.18119009720124563, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "119.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8984989868992302, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.14663818784336888, - -0.10759059559084724 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.5178530156833788, - 0.2740830582199257, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6827430530490247, - 0.18282129903075772, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.18073817277829832, - 0.1889892827709722, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "120.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9250318849920657, - 0.0, - 0.35762569196842375, - -0.3821480307890015, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.5279442562295813, - 0.35177563023781444, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3370609196597343, - 0.1913650305479164, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.49713567827689825, - 0.1634024237574172, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "121.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9061469386983908, - 0.0, - 0.10976676145287574, - -0.11825216920538503, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.7044009918443815, - 0.2974682992148565, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6500265954238238, - 0.19610039885443853, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2011980117485986, - 0.19801426515974066, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "122.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9555891577363189, - 0.0, - -482489562450.51984, - 0.0, - 0.0, - 0.5359866354410462, - -0.5505806350900019, - 482489562450.3396, - 0.6245340998354854, - -0.48584361063336146 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.6120825311434814, - 0.33612883537901717, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.48549660507028597, - 0.21606162280618685, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3087452983557629, - 0.17241440596363236, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "123.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9164661064782641, - 0.0, - 0.2495693616298864, - -0.2719606704674735, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.12400388435818, - 0.31740729420977737, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6291010258447787, - 0.20560860141466714, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2088700830691204, - 0.20198841141102708, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "124.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8880238151862827, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.30908314893940303, - 0.2801275458027224, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.6543517583774803, - 0.19763808613053793, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.1437531034835467, - 0.16398649445573507, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "125.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9335988184320205, - 0.0, - 0.419035763882346, - -0.4521066287295413, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.9835900902030121, - 0.38972270694771577, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.511144402319865, - 0.2017179105955964, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.3512602268797568, - 0.17100051225048088, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "126.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.9295107857487293, - 0.0, - 0.44538223614580585, - -0.48078335654328863, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -1.8752200559619063, - 0.36420003330834894, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.28076285006829765, - 0.4010443703251272, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.2819947589052758, - 0.3969762933923318, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - }, - "127.0": { - "x_learning_rate_reward": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_learning_rate_reward', 'c_reward', 'c_value_reward'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.05, 0.1 , 0.1 , 0.1 , 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.8935042450814392, - 0.0, - 0.0, - -0.05070950274018878, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_learning_rate_reward", - "c_reward", - "c_value_reward" - ] - }, - "x_value_reward_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_reward_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - -0.44272928459585564, - 0.29693762430077164, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_reward_not_chosen", - "dummy" - ] - }, - "x_value_choice_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.7896977764178686, - 0.1321137756988995, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_chosen", - "dummy" - ] - }, - "x_value_choice_not_chosen": { - "equation": "SINDy(differentiation_method=FiniteDifference(axis=-2), discrete_time=True,\n feature_library=PolynomialLibrary(),\n feature_names=['x_value_choice_not_chosen', 'dummy'],\n optimizer=SR3(nu=1, threshold=0.05, thresholder='weighted_l1',\n thresholds=array([[0. , 0.05, 0.05, 0.1 , 0.1 , 0.1 ]]),\n verbose=True))", - "coefficients": [ - 0.11410254890506623, - 0.0, - 0.0, - 0.0, - 0.0, - 0.0 - ], - "feature_names": [ - "x_value_choice_not_chosen", - "dummy" - ] - } - } - }, - "participant_metrics": { - "0.0": { - "ll": -0.34424774569401506, - "bic": 1.3708862517583802, - "params": 10, - "n_val_trials": 60 - }, - "1.0": { - "ll": -4.578895832809169, - "bic": 10.113138730136829, - "params": 14, - "n_val_trials": 60 - }, - "2.0": { - "ll": -0.7011667818627865, - "bic": 2.016485248058888, - "params": 9, - "n_val_trials": 60 - }, - "3.0": { - "ll": -2.6777352322182333, - "bic": 6.106100300843852, - "params": 11, - "n_val_trials": 60 - }, - "4.0": { - "ll": -0.45797976086427217, - "bic": 1.4618721300248245, - "params": 8, - "n_val_trials": 60 - }, - "5.0": { - "ll": -0.6699205138419508, - "bic": 2.0222317880542517, - "params": 10, - "n_val_trials": 60 - }, - "6.0": { - "ll": -3.6153068096786836, - "bic": 8.322438835949928, - "params": 16, - "n_val_trials": 60 - }, - "7.0": { - "ll": -0.1818462776597788, - "bic": 0.9096051636158377, - "params": 8, - "n_val_trials": 60 - }, - "8.0": { - "ll": -0.018247019201768532, - "bic": 0.6506457227368521, - "params": 9, - "n_val_trials": 60 - }, - "9.0": { - "ll": -0.6931471805599454, - "bic": 2.2051632735643105, - "params": 12, - "n_val_trials": 60 - }, - "10.0": { - "ll": -0.3716097981816585, - "bic": 1.562088508807737, - "params": 12, - "n_val_trials": 60 - }, - "11.0": { - "ll": -0.3413600253870343, - "bic": 1.2968717351073835, - "params": 9, - "n_val_trials": 60 - }, - "12.0": { - "ll": -0.030069099951063005, - "bic": 0.674289884235441, - "params": 9, - "n_val_trials": 60 - }, - "13.0": { - "ll": -1.3708323698684335, - "bic": 3.492294576144252, - "params": 11, - "n_val_trials": 60 - }, - "14.0": { - "ll": -0.6976973352445975, - "bic": 2.00954635482251, - "params": 9, - "n_val_trials": 60 - }, - "15.0": { - "ll": -10.636408386619628, - "bic": 22.228163837757748, - "params": 14, - "n_val_trials": 60 - }, - "16.0": { - "ll": -0.5016609742861494, - "bic": 1.9586690130907887, - "params": 14, - "n_val_trials": 60 - }, - "17.0": { - "ll": -0.9170291660646548, - "bic": 2.5164490924996596, - "params": 10, - "n_val_trials": 60 - }, - "18.0": { - "ll": -0.7107132671411904, - "bic": 2.035578218615696, - "params": 9, - "n_val_trials": 60 - }, - "19.0": { - "ll": -2.4471311698271774, - "bic": 5.781370328135809, - "params": 13, - "n_val_trials": 60 - }, - "20.0": { - "ll": -0.641903259806691, - "bic": 1.8979582039466971, - "params": 9, - "n_val_trials": 60 - }, - "21.0": { - "ll": -0.6931471805599454, - "bic": 2.136924197527276, - "params": 11, - "n_val_trials": 60 - }, - "22.0": { - "ll": -0.39901507333450126, - "bic": 1.4121818310023175, - "params": 9, - "n_val_trials": 60 - }, - "23.0": { - "ll": -0.6931358374004726, - "bic": 2.2733796632824, - "params": 13, - "n_val_trials": 60 - }, - "24.0": { - "ll": -0.7808650234980585, - "bic": 2.175881731329432, - "params": 9, - "n_val_trials": 60 - }, - "25.0": { - "ll": -3.8408839986117203, - "bic": 8.50063690966786, - "params": 12, - "n_val_trials": 60 - }, - "26.0": { - "ll": -0.6665859141468098, - "bic": 2.0155625886639696, - "params": 10, - "n_val_trials": 60 - }, - "27.0": { - "ll": -0.6931471805599454, - "bic": 2.273402349601346, - "params": 13, - "n_val_trials": 60 - }, - "28.0": { - "ll": -0.023716734069432508, - "bic": 0.866302380583285, - "params": 12, - "n_val_trials": 60 - }, - "29.0": { - "ll": -0.6149335277947938, - "bic": 1.9122578159599377, - "params": 10, - "n_val_trials": 60 - }, - "30.0": { - "ll": -0.19508373205134769, - "bic": 1.0043191484360103, - "params": 9, - "n_val_trials": 60 - }, - "31.0": { - "ll": -0.5621599710555387, - "bic": 1.7384716264443925, - "params": 9, - "n_val_trials": 60 - }, - "32.0": { - "ll": -0.6931471805599454, - "bic": 2.068685121490241, - "params": 10, - "n_val_trials": 60 - }, - "33.0": { - "ll": -0.46013402212630056, - "bic": 1.7391369566970212, - "params": 12, - "n_val_trials": 60 - }, - "34.0": { - "ll": -0.15775083274153415, - "bic": 0.8614142737793483, - "params": 8, - "n_val_trials": 60 - }, - "35.0": { - "ll": -0.9019791154438975, - "bic": 2.41810991522111, - "params": 9, - "n_val_trials": 60 - }, - "36.0": { - "ll": -0.6988287517038543, - "bic": 2.0118091877410236, - "params": 9, - "n_val_trials": 60 - }, - "37.0": { - "ll": -5.215764313450042, - "bic": 11.386875691418574, - "params": 14, - "n_val_trials": 60 - }, - "38.0": { - "ll": -0.15827019250679308, - "bic": 1.067170221420971, - "params": 11, - "n_val_trials": 60 - }, - "39.0": { - "ll": -9.093160013875035, - "bic": 19.141667092268563, - "params": 14, - "n_val_trials": 60 - }, - "40.0": { - "ll": -0.5505335589905079, - "bic": 1.7152188023143309, - "params": 9, - "n_val_trials": 60 - }, - "41.0": { - "ll": -0.6931471805599454, - "bic": 2.068685121490241, - "params": 10, - "n_val_trials": 60 - }, - "42.0": { - "ll": -0.03818658163220474, - "bic": 0.6905248475977246, - "params": 9, - "n_val_trials": 60 - }, - "43.0": { - "ll": -0.2566775943479053, - "bic": 1.1275068730291258, - "params": 9, - "n_val_trials": 60 - }, - "44.0": { - "ll": -0.014115686405770073, - "bic": 0.6423830571448551, - "params": 9, - "n_val_trials": 60 - }, - "45.0": { - "ll": -1.3923237934445192, - "bic": 3.6035164993334585, - "params": 12, - "n_val_trials": 60 - }, - "46.0": { - "ll": -5.80904644630726, - "bic": 12.505200881095975, - "params": 13, - "n_val_trials": 60 - }, - "47.0": { - "ll": -0.654196189213667, - "bic": 1.922544062760649, - "params": 9, - "n_val_trials": 60 - }, - "48.0": { - "ll": -0.7278429240434184, - "bic": 2.138076608457187, - "params": 10, - "n_val_trials": 60 - }, - "49.0": { - "ll": -2.516544199928737, - "bic": 6.056674540412999, - "params": 15, - "n_val_trials": 60 - }, - "50.0": { - "ll": -0.2648277811880246, - "bic": 1.2120463227463991, - "params": 10, - "n_val_trials": 60 - }, - "51.0": { - "ll": -0.017992481330861034, - "bic": 0.650136646995037, - "params": 9, - "n_val_trials": 60 - }, - "52.0": { - "ll": -6.517603535813061, - "bic": 13.990554136144612, - "params": 14, - "n_val_trials": 60 - }, - "53.0": { - "ll": -3.7424536130553623, - "bic": 8.576732442703284, - "params": 16, - "n_val_trials": 60 - }, - "54.0": { - "ll": -0.03327067498916425, - "bic": 0.8854102624227486, - "params": 12, - "n_val_trials": 60 - }, - "55.0": { - "ll": -0.18151397721072574, - "bic": 0.7724624106436615, - "params": 6, - "n_val_trials": 60 - }, - "56.0": { - "ll": -0.44572083688292385, - "bic": 1.5055933580991627, - "params": 9, - "n_val_trials": 60 - }, - "57.0": { - "ll": -0.3145559330114052, - "bic": 1.2432635503561253, - "params": 9, - "n_val_trials": 60 - }, - "58.0": { - "ll": -0.19496575240082933, - "bic": 1.0040831891349737, - "params": 9, - "n_val_trials": 60 - }, - "59.0": { - "ll": -0.6874627873869775, - "bic": 1.98907725910727, - "params": 9, - "n_val_trials": 60 - }, - "60.0": { - "ll": -6.7971751734737, - "bic": 14.481458335428853, - "params": 13, - "n_val_trials": 60 - }, - "61.0": { - "ll": -0.634448645760262, - "bic": 1.8830489758538391, - "params": 9, - "n_val_trials": 60 - }, - "62.0": { - "ll": -3.315270557769687, - "bic": 7.654127256094899, - "params": 15, - "n_val_trials": 60 - }, - "63.0": { - "ll": -0.034837442693603206, - "bic": 0.6155874936834865, - "params": 8, - "n_val_trials": 60 - }, - "64.0": { - "ll": -1.437417761677142, - "bic": 3.488987207687599, - "params": 9, - "n_val_trials": 60 - }, - "65.0": { - "ll": -0.3961471414429022, - "bic": 1.2699678151450493, - "params": 7, - "n_val_trials": 60 - }, - "66.0": { - "ll": -1.9417634592719053, - "bic": 4.8388739830623, - "params": 14, - "n_val_trials": 60 - }, - "67.0": { - "ll": -0.5519074959164428, - "bic": 1.9226839042773058, - "params": 12, - "n_val_trials": 60 - }, - "68.0": { - "ll": -0.015576551067715322, - "bic": 0.6453047864687457, - "params": 9, - "n_val_trials": 60 - }, - "69.0": { - "ll": -9.984062973922558, - "bic": 20.7187557842525, - "params": 11, - "n_val_trials": 60 - }, - "70.0": { - "ll": -1.7731273085230563, - "bic": 4.569840757601638, - "params": 15, - "n_val_trials": 60 - }, - "71.0": { - "ll": -0.022467399266977953, - "bic": 0.659086482867271, - "params": 9, - "n_val_trials": 60 - }, - "72.0": { - "ll": -0.019189693099852398, - "bic": 0.7207701465700549, - "params": 10, - "n_val_trials": 60 - }, - "73.0": { - "ll": -0.6733385230570852, - "bic": 1.8925896544104504, - "params": 8, - "n_val_trials": 60 - }, - "74.0": { - "ll": -5.2713540637190555, - "bic": 11.36157703988253, - "params": 12, - "n_val_trials": 60 - }, - "75.0": { - "ll": -4.807157155009037, - "bic": 10.501422298499529, - "params": 13, - "n_val_trials": 60 - }, - "76.0": { - "ll": -6.521154346745241, - "bic": 14.202372986120077, - "params": 17, - "n_val_trials": 60 - }, - "77.0": { - "ll": -3.495607396987641, - "bic": 8.014800934530808, - "params": 15, - "n_val_trials": 60 - }, - "78.0": { - "ll": -0.6853655349428426, - "bic": 2.053121830256035, - "params": 10, - "n_val_trials": 60 - }, - "79.0": { - "ll": -0.49483861138212587, - "bic": 1.6038289070975666, - "params": 9, - "n_val_trials": 60 - }, - "80.0": { - "ll": -5.480667999927943, - "bic": 11.84844398833734, - "params": 13, - "n_val_trials": 60 - }, - "81.0": { - "ll": -0.0267432340789263, - "bic": 0.5993990764541326, - "params": 8, - "n_val_trials": 60 - }, - "82.0": { - "ll": -0.39907647986943745, - "bic": 1.4123046440721898, - "params": 9, - "n_val_trials": 60 - }, - "83.0": { - "ll": -0.1578481694630976, - "bic": 0.7933698711854402, - "params": 7, - "n_val_trials": 60 - }, - "84.0": { - "ll": -1.6188701908614258, - "bic": 3.8518920660561666, - "params": 9, - "n_val_trials": 60 - }, - "85.0": { - "ll": -0.6931471805599454, - "bic": 2.000446045453206, - "params": 9, - "n_val_trials": 60 - }, - "86.0": { - "ll": -4.457331872421273, - "bic": 9.66529358124993, - "params": 11, - "n_val_trials": 60 - }, - "87.0": { - "ll": -7.454578913079933, - "bic": 16.000983042752427, - "params": 16, - "n_val_trials": 60 - }, - "88.0": { - "ll": -0.8406289136047762, - "bic": 2.3636485875799025, - "params": 10, - "n_val_trials": 60 - }, - "89.0": { - "ll": -0.6700936274914094, - "bic": 1.954338939316134, - "params": 9, - "n_val_trials": 60 - }, - "90.0": { - "ll": -0.15014811386280094, - "bic": 0.9144479120589168, - "params": 9, - "n_val_trials": 60 - }, - "91.0": { - "ll": -0.15804357785131323, - "bic": 0.7937606879618715, - "params": 7, - "n_val_trials": 60 - }, - "92.0": { - "ll": -0.7156631428047312, - "bic": 2.0454779699427776, - "params": 9, - "n_val_trials": 60 - }, - "93.0": { - "ll": -0.42060347102041895, - "bic": 1.6600758544852579, - "params": 12, - "n_val_trials": 60 - }, - "94.0": { - "ll": -0.5870144502814761, - "bic": 1.7881805848962673, - "params": 9, - "n_val_trials": 60 - }, - "95.0": { - "ll": -0.26189508232580566, - "bic": 1.0697027729478914, - "params": 8, - "n_val_trials": 60 - }, - "96.0": { - "ll": -0.5821811053443826, - "bic": 1.7785138950220802, - "params": 9, - "n_val_trials": 60 - }, - "97.0": { - "ll": -4.353052703678598, - "bic": 9.45673524376458, - "params": 11, - "n_val_trials": 60 - }, - "98.0": { - "ll": -0.15760663336876923, - "bic": 0.8611258750338185, - "params": 8, - "n_val_trials": 60 - }, - "99.0": { - "ll": -0.25516805166811796, - "bic": 1.192726863706586, - "params": 10, - "n_val_trials": 60 - }, - "100.0": { - "ll": -0.026331871227161074, - "bic": 0.8032935788617072, - "params": 11, - "n_val_trials": 60 - }, - "101.0": { - "ll": -14.569135047116065, - "bic": 29.888899930639514, - "params": 11, - "n_val_trials": 60 - }, - "102.0": { - "ll": -15.6282886070649, - "bic": 32.07544612657422, - "params": 12, - "n_val_trials": 60 - }, - "103.0": { - "ll": -0.6931471805599454, - "bic": 2.2051632735643105, - "params": 12, - "n_val_trials": 60 - }, - "104.0": { - "ll": -0.6931471805599454, - "bic": 2.068685121490241, - "params": 10, - "n_val_trials": 60 - }, - "105.0": { - "ll": -0.7033064064296007, - "bic": 2.2937208013406565, - "params": 13, - "n_val_trials": 60 - }, - "106.0": { - "ll": -0.6931471805599454, - "bic": 2.000446045453206, - "params": 9, - "n_val_trials": 60 - }, - "107.0": { - "ll": -0.7841308295182343, - "bic": 2.182413343369783, - "params": 9, - "n_val_trials": 60 - }, - "108.0": { - "ll": -0.20407312375985734, - "bic": 1.0222979318530296, - "params": 9, - "n_val_trials": 60 - }, - "109.0": { - "ll": -0.6931471805599454, - "bic": 2.409880501675416, - "params": 15, - "n_val_trials": 60 - }, - "110.0": { - "ll": -5.480424282643867, - "bic": 11.71147840169512, - "params": 11, - "n_val_trials": 60 - }, - "111.0": { - "ll": -0.6931471805599454, - "bic": 2.136924197527276, - "params": 11, - "n_val_trials": 60 - }, - "112.0": { - "ll": -5.326668911863204, - "bic": 11.472206736170827, - "params": 12, - "n_val_trials": 60 - }, - "113.0": { - "ll": -4.950264703870696, - "bic": 10.855876472259881, - "params": 14, - "n_val_trials": 60 - }, - "114.0": { - "ll": -0.7002152752757415, - "bic": 1.878104082810728, - "params": 7, - "n_val_trials": 60 - }, - "115.0": { - "ll": -8.916480743645256, - "bic": 18.65183039973493, - "params": 12, - "n_val_trials": 60 - }, - "116.0": { - "ll": -0.3002106847103561, - "bic": 1.2145730537540274, - "params": 9, - "n_val_trials": 60 - }, - "117.0": { - "ll": -2.952187142033294, - "bic": 6.7232431965110075, - "params": 12, - "n_val_trials": 60 - }, - "118.0": { - "ll": -0.16254413459485562, - "bic": 0.9392399535230262, - "params": 9, - "n_val_trials": 60 - }, - "119.0": { - "ll": -0.39159176389509504, - "bic": 1.3973352121235052, - "params": 9, - "n_val_trials": 60 - }, - "120.0": { - "ll": -0.185006966630494, - "bic": 0.9841656175943031, - "params": 9, - "n_val_trials": 60 - }, - "121.0": { - "ll": -0.7888627499721003, - "bic": 2.1918771842775158, - "params": 9, - "n_val_trials": 60 - }, - "122.0": { - "ll": -7.8331893246386395, - "bic": 16.553486637758734, - "params": 13, - "n_val_trials": 60 - }, - "123.0": { - "ll": -0.6931471805599454, - "bic": 2.000446045453206, - "params": 9, - "n_val_trials": 60 - }, - "124.0": { - "ll": -0.6931471805599454, - "bic": 1.863967893379136, - "params": 7, - "n_val_trials": 60 - }, - "125.0": { - "ll": -0.011592611690944495, - "bic": 0.637336907715204, - "params": 9, - "n_val_trials": 60 - }, - "126.0": { - "ll": -0.758969499728329, - "bic": 2.132090683789973, - "params": 9, - "n_val_trials": 60 - }, - "127.0": { - "ll": -0.6918216859721991, - "bic": 1.8613169042036433, - "params": 7, - "n_val_trials": 60 - } - } -} \ No newline at end of file diff --git a/analysis/finetuning_SEQ/sindy_bic_comparison.png b/analysis/finetuning_SEQ/sindy_bic_comparison.png deleted file mode 100644 index e3c96246..00000000 Binary files a/analysis/finetuning_SEQ/sindy_bic_comparison.png and /dev/null differ diff --git a/analysis/participants2.py b/analysis/participants2.py new file mode 100644 index 00000000..c4a5ac62 --- /dev/null +++ b/analysis/participants2.py @@ -0,0 +1,112 @@ +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +import seaborn as sns +from matplotlib.colors import Normalize +from matplotlib.cm import ScalarMappable +import matplotlib.gridspec as gridspec + +df = pd.read_csv('AAAAsindy_analysis_with_metrics.csv') + +df = df.rename(columns={'slcn_age - years': 'age'}) + +behavioral_measures = ['switch_rate', 'stay_after_reward', 'perseveration', 'avg_reward'] +output_metrics = ['bic_spice', 'aic_spice'] #whatever, updtae here + +fig = plt.figure(figsize=(15, 12)) +outer_grid = gridspec.GridSpec(2, 1, height_ratios=[1, 1], hspace=0.3) + +# colormap for age +cmap = plt.cm.viridis +norm = Normalize(vmin=df['age'].min(), vmax=df['age'].max()) + +cbar_ax = fig.add_axes([0.92, 0.15, 0.02, 0.7]) +sm = ScalarMappable(norm=norm, cmap=cmap) +sm.set_array([]) +cbar = fig.colorbar(sm, cax=cbar_ax) +cbar.set_label('Age (years)', fontsize=12) + +# Function to calculate correlation and p-value +def calculate_correlation(x, y): + mask = ~np.isnan(x) & ~np.isnan(y) + if sum(mask) < 3: # Need at least 3 data points for correlation + return "Insufficient data" + + corr = np.corrcoef(x[mask], y[mask])[0, 1] + return f"r = {corr:.3f}" + +# through output metrics +for i, metric in enumerate(output_metrics): + inner_grid = gridspec.GridSpecFromSubplotSpec(1, len(behavioral_measures), + subplot_spec=outer_grid[i], wspace=0.3) + + for j, behavior in enumerate(behavioral_measures): + ax = plt.Subplot(fig, inner_grid[j]) + + # Filter out NaN values for this specific pair + valid_data = df.dropna(subset=[behavior, metric, 'age']) + + # Only proceed if we have enough data points + if len(valid_data) > 2: + # Create scatter plot + scatter = ax.scatter(valid_data[behavior], valid_data[metric], + c=valid_data['age'], cmap=cmap, norm=norm, + alpha=0.7, edgecolors='w', linewidth=0.5) + + corr_text = calculate_correlation(valid_data[behavior], valid_data[metric]) + + # regression line + sns.regplot(x=behavior, y=metric, data=valid_data, + scatter=False, ci=None, line_kws={'color': 'red'}, ax=ax) + + ax.text(0.05, 0.95, corr_text, transform=ax.transAxes, + fontsize=10, verticalalignment='top', + bbox=dict(boxstyle='round', facecolor='white', alpha=0.7)) + else: + ax.text(0.5, 0.5, "Insufficient data", transform=ax.transAxes, + fontsize=12, ha='center') + + ax.set_title(f"{behavior.replace('_', ' ').title()}", fontsize=12) + ax.set_xlabel(behavior.replace('_', ' ').title(), fontsize=10) + + if j == 0: # Only add y-label to the leftmost subplot + if metric == 'bic_spice': + ax.set_ylabel('BIC (Spice Model)', fontsize=10) + else: + ax.set_ylabel('AIC (Spice Model)', fontsize=10) + + fig.add_subplot(ax) + + row_title = "Behavioral Measures vs BIC (Spice Model)" if metric == 'bic_spice' else "Behavioral Measures vs AIC (Spice Model)" + fig.text(0.5, 0.98 - i*0.48, row_title, ha='center', fontsize=16, fontweight='bold') + +import os +os.makedirs('analysis/plots', exist_ok=True) +plt.savefig('analysis/plots/behavioral_vs_bic_aic_scatter.png', dpi=300, bbox_inches='tight') +plt.close() + + + +# second plot for correlation matrix +plt.figure(figsize=(10, 8)) + +# Select columns for correlation +selected_columns = behavioral_measures + output_metrics + ['age'] +corr_df = df[selected_columns].dropna() + +corr_matrix = corr_df.corr() + +sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1, fmt='.2f', linewidths=0.5) +plt.title('Correlation Matrix of Behavioral Measures, Model Metrics, and Age', fontsize=14) +plt.tight_layout() +plt.savefig('analysis/plots/correlation_matrix.png', dpi=300) +plt.close() + +print("\nsig correlations with BIC and AIC:") +for behavior in behavioral_measures: + for metric in output_metrics: + valid_data = df.dropna(subset=[behavior, metric]) + if len(valid_data) > 2: + corr = np.corrcoef(valid_data[behavior], valid_data[metric])[0, 1] + if abs(corr) > 0.3: # Only show correlations stronger than 0.3 + print(f"{behavior} vs {metric}: r = {corr:.3f}") \ No newline at end of file diff --git a/analysis/participants3.py b/analysis/participants3.py new file mode 100644 index 00000000..c51bf8a4 --- /dev/null +++ b/analysis/participants3.py @@ -0,0 +1,171 @@ +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +import seaborn as sns +import os +from scipy import stats + +os.makedirs('analysis/plots', exist_ok=True) + +df = pd.read_csv('AAAAsindy_analysis_with_metrics.csv') + +df = df.rename(columns={'slcn_age - years': 'age'}) + +# model metrics to analyze +model_metrics = [ + 'nll_spice', + 'nll_rnn', + 'trial_likelihood_spice', + 'trial_likelihood_rnn', + 'bic_spice', + 'aic_spice' +] + +metric_names = { + 'nll_spice': 'Negative Log-Likelihood (SPICE)', + 'nll_rnn': 'Negative Log-Likelihood (RNN)', + 'trial_likelihood_spice': 'Trial Likelihood (SPICE)', + 'trial_likelihood_rnn': 'Trial Likelihood (RNN)', + 'bic_spice': 'BIC (SPICE)', + 'aic_spice': 'AIC (SPICE)' +} + +def calculate_correlation(x, y): + mask = ~np.isnan(x) & ~np.isnan(y) + if sum(mask) < 3: # Need at least 3 data points for correlation + return "Insufficient data", 1.0 + + r, p = stats.pearsonr(x[mask], y[mask]) + significance = "" + if p < 0.001: + significance = "***" + elif p < 0.01: + significance = "**" + elif p < 0.05: + significance = "*" + + corr_text = f"r = {r:.3f}{significance}" + return corr_text, p + +plt.figure(figsize=(18, 12)) + +for i, metric in enumerate(model_metrics): + ax = plt.subplot(2, 3, i+1) + + # Drop rows with NaN values for this metric or age + valid_data = df.dropna(subset=[metric, 'age']) + + # Only proceed if we have enough data points + if len(valid_data) > 2: + sns.scatterplot(x='age', y=metric, data=valid_data, + alpha=0.7, edgecolor='w', s=80, ax=ax) + + sns.regplot(x='age', y=metric, data=valid_data, + scatter=False, ci=95, line_kws={'color': 'red'}, ax=ax) + + corr_text, p_value = calculate_correlation(valid_data['age'], valid_data[metric]) + + # Add correlation text + ax.text(0.05, 0.95, corr_text, transform=ax.transAxes, + fontsize=12, verticalalignment='top', + bbox=dict(boxstyle='round', facecolor='white', alpha=0.7)) + + # Add linear equation if the correlation is significant + if p_value < 0.05: + # Calculate linear regression + slope, intercept, r_value, _, _ = stats.linregress( + valid_data['age'].dropna(), valid_data[metric].dropna()) + equation = f"y = {slope:.3f}x + {intercept:.3f}" + ax.text(0.05, 0.87, equation, transform=ax.transAxes, + fontsize=10, verticalalignment='top', + bbox=dict(boxstyle='round', facecolor='white', alpha=0.7)) + else: + ax.text(0.5, 0.5, "Insufficient data", transform=ax.transAxes, + fontsize=12, ha='center') + + # Set titles and labels + ax.set_title(metric_names[metric], fontsize=14) + ax.set_xlabel('Age (years)', fontsize=12) + ax.set_ylabel(metric_names[metric], fontsize=12) + + # Add grid + ax.grid(True, linestyle='--', alpha=0.7) + +plt.tight_layout() +plt.savefig('analysis/plots/age_vs_model_metrics.png', dpi=300, bbox_inches='tight') + +for metric in model_metrics: + plt.figure(figsize=(8, 6)) + + valid_data = df.dropna(subset=[metric, 'age']) + + if len(valid_data) > 2: + # Create scatter plot + sns.scatterplot(x='age', y=metric, data=valid_data, + alpha=0.7, edgecolor='w', s=100) + + # Add regression line with confidence interval + sns.regplot(x='age', y=metric, data=valid_data, + scatter=False, ci=95, line_kws={'color': 'red'}) + + corr_text, p_value = calculate_correlation(valid_data['age'], valid_data[metric]) + + # Add correlation text + plt.text(0.05, 0.95, corr_text, transform=plt.gca().transAxes, + fontsize=12, verticalalignment='top', + bbox=dict(boxstyle='round', facecolor='white', alpha=0.7)) + + # Add linear equation if significant + if p_value < 0.05: + slope, intercept, r_value, _, _ = stats.linregress( + valid_data['age'].dropna(), valid_data[metric].dropna()) + equation = f"y = {slope:.3f}x + {intercept:.3f}" + plt.text(0.05, 0.87, equation, transform=plt.gca().transAxes, + fontsize=10, verticalalignment='top', + bbox=dict(boxstyle='round', facecolor='white', alpha=0.7)) + + # Add jitter to points if there are many overlapping points + if len(valid_data) > 20: + + pass # Tfis is for proper indentation + + # Add data points count + plt.text(0.05, 0.79, f"n = {len(valid_data)}", transform=plt.gca().transAxes, + fontsize=10, verticalalignment='top', + bbox=dict(boxstyle='round', facecolor='white', alpha=0.7)) + else: + plt.text(0.5, 0.5, "Insufficient data", transform=plt.gca().transAxes, + fontsize=12, ha='center') + + plt.title(f"Age vs {metric_names[metric]}", fontsize=14) + plt.xlabel('Age (years)', fontsize=12) + plt.ylabel(metric_names[metric], fontsize=12) + + plt.grid(True, linestyle='--', alpha=0.7) + + plt.tight_layout() + plt.savefig(f'analysis/plots/age_vs_{metric}.png', dpi=300, bbox_inches='tight') + plt.close() + + + + + +# correlation summary table +correlation_data = [] +for metric in model_metrics: + valid_data = df.dropna(subset=[metric, 'age']) + if len(valid_data) > 2: + r, p = stats.pearsonr(valid_data['age'], valid_data[metric]) + correlation_data.append({ + 'Metric': metric_names[metric], + 'Correlation': r, + 'p-value': p, + 'n': len(valid_data) + }) + +corr_summary = pd.DataFrame(correlation_data) +print("\nCorrelation Summary:") +print(corr_summary.to_string(index=False)) + +corr_summary.to_csv('analysis/plots/age_correlations_summary.csv', index=False) diff --git a/analysis/participants4.py b/analysis/participants4.py new file mode 100644 index 00000000..107fa801 --- /dev/null +++ b/analysis/participants4.py @@ -0,0 +1,385 @@ +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +import seaborn as sns +from sklearn.decomposition import PCA +from sklearn.manifold import TSNE +from sklearn.cluster import KMeans +from sklearn.metrics import silhouette_score, davies_bouldin_score, calinski_harabasz_score +from scipy.stats import pearsonr, spearmanr, f_oneway, kruskal +import os +from matplotlib.colors import Normalize +from scipy.cluster.hierarchy import dendrogram, linkage +import warnings +warnings.filterwarnings('ignore') + +output_dir = '/Users/martynaplomecka/closedloop_rl/analysis/plots/clustering_plots' +os.makedirs(output_dir, exist_ok=True) + +df = pd.read_csv('AAAAsindy_analysis_with_metrics.csv') +df = df.rename(columns={'slcn_age - years': 'age'}) + +df = df[df['age'] <= 45].copy() +print(f"Number of participants after age filtering (≤45): {len(df)}") + +# embedding features +embedding_cols = [col for col in df.columns if col.startswith('embedding_')] +print(f"Found {len(embedding_cols)} embedding dimensions") + +# Define behavioral metrics +behavioral_metrics = ['switch_rate', 'stay_after_reward', 'perseveration', 'avg_reward', 'n_trials'] + +complete_data = df.dropna(subset=embedding_cols + ['age'] + behavioral_metrics) +print(f"Number of participants with complete data: {len(complete_data)}") + + +# PCA for general structure visualization +pca = PCA(n_components=2) +pca_result = pca.fit_transform(complete_data[embedding_cols]) +print(f"PCA explained variance ratio: {pca.explained_variance_ratio_}") +print(f"PCA total explained variance: {sum(pca.explained_variance_ratio_):.2f}") + +# t-SNE for cluster visualization +tsne = TSNE(n_components=2, random_state=42, perplexity=min(30, len(complete_data)-1)) +tsne_result = tsne.fit_transform(complete_data[embedding_cols]) + +# optimal number of clusters +max_clusters = min(10, len(complete_data) - 1) +silhouette_scores = [] +db_scores = [] +ch_scores = [] + +for n_clusters in range(2, max_clusters + 1): + # KMeans clustering + kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10) + cluster_labels = kmeans.fit_predict(complete_data[embedding_cols]) + + silhouette = silhouette_score(complete_data[embedding_cols], cluster_labels) + db = davies_bouldin_score(complete_data[embedding_cols], cluster_labels) + ch = calinski_harabasz_score(complete_data[embedding_cols], cluster_labels) + + silhouette_scores.append(silhouette) + db_scores.append(db) + ch_scores.append(ch) + + print(f"Clusters: {n_clusters}, Silhouette: {silhouette:.3f}, Davies-Bouldin: {db:.3f}, Calinski-Harabasz: {ch:.3f}") + +# Plot clustering metrics +fig, axes = plt.subplots(1, 3, figsize=(15, 5)) + +axes[0].plot(range(2, max_clusters + 1), silhouette_scores, 'o-') +axes[0].set_xlabel('Number of Clusters') +axes[0].set_ylabel('Silhouette Score') +axes[0].set_title('Silhouette Score (higher is better)') +axes[0].grid(True) + +axes[1].plot(range(2, max_clusters + 1), db_scores, 'o-') +axes[1].set_xlabel('Number of Clusters') +axes[1].set_ylabel('Davies-Bouldin Score') +axes[1].set_title('Davies-Bouldin Score (lower is better)') +axes[1].grid(True) + +axes[2].plot(range(2, max_clusters + 1), ch_scores, 'o-') +axes[2].set_xlabel('Number of Clusters') +axes[2].set_ylabel('Calinski-Harabasz Score') +axes[2].set_title('Calinski-Harabasz Score (higher is better)') +axes[2].grid(True) + +plt.tight_layout() +plt.savefig(f'{output_dir}/cluster_metrics.png', dpi=300, bbox_inches='tight') +plt.close() + +# optimal number of clusters based on metrics +optimal_n_silhouette = np.argmax(silhouette_scores) + 2 +optimal_n_db = np.argmin(db_scores) + 2 +optimal_n_ch = np.argmax(ch_scores) + 2 + +print(f"Optimal number of clusters (Silhouette): {optimal_n_silhouette}") +print(f"Optimal number of clusters (Davies-Bouldin): {optimal_n_db}") +print(f"Optimal number of clusters (Calinski-Harabasz): {optimal_n_ch}") + +# Choose the optimal number based on majority voting +optimal_n_clusters = int(np.median([optimal_n_silhouette, optimal_n_db, optimal_n_ch])) +print(f"Selected optimal number of clusters: {optimal_n_clusters}") + +# Apply KMeans with optimal number of clusters +kmeans = KMeans(n_clusters=optimal_n_clusters, random_state=42, n_init=10) +cluster_labels = kmeans.fit_predict(complete_data[embedding_cols]) +complete_data = complete_data.copy() +complete_data['cluster'] = cluster_labels + + + + + + + +#PLOTS +fig, axes = plt.subplots(1, 2, figsize=(16, 6)) + +# PCA Plot +scatter1 = axes[0].scatter(pca_result[:, 0], pca_result[:, 1], c=cluster_labels, cmap='viridis', s=80, alpha=0.8) +axes[0].set_xlabel(f'PCA Component 1 ({pca.explained_variance_ratio_[0]:.2%} variance)') +axes[0].set_ylabel(f'PCA Component 2 ({pca.explained_variance_ratio_[1]:.2%} variance)') +axes[0].set_title(f'PCA Projection with {optimal_n_clusters} Clusters') +axes[0].grid(True, alpha=0.3) + +# t-SNE Plot +scatter2 = axes[1].scatter(tsne_result[:, 0], tsne_result[:, 1], c=cluster_labels, cmap='viridis', s=80, alpha=0.8) +axes[1].set_xlabel('t-SNE Component 1') +axes[1].set_ylabel('t-SNE Component 2') +axes[1].set_title(f't-SNE Projection with {optimal_n_clusters} Clusters') +axes[1].grid(True, alpha=0.3) + +# Add colorbar +plt.subplots_adjust(right=0.85) +cbar_ax = fig.add_axes([0.87, 0.15, 0.02, 0.7]) +cbar = fig.colorbar(scatter1, cax=cbar_ax) +cbar.set_label('Cluster', rotation=270, labelpad=15) + +plt.savefig(f'{output_dir}/embedding_clusters.png', dpi=300, bbox_inches='tight') +plt.close() + +# Step 6: Behavioral measures by cluster +n_metrics = len(behavioral_metrics) + 1 # +1 for age +n_cols = 3 +n_rows = (n_metrics + n_cols - 1) // n_cols + +fig, axes = plt.subplots(n_rows, n_cols, figsize=(18, 12)) +fig.suptitle(f'Behavioral Measures by Cluster (Age ≤ 45)', fontsize=16) + +# Flatten axes for easier indexing +if n_rows == 1: + axes = [axes] +else: + axes = axes.flatten() + +# Plot behavioral metrics + age +for i, metric in enumerate(behavioral_metrics + ['age']): + if i < len(axes): + ax = axes[i] + sns.boxplot(x='cluster', y=metric, data=complete_data, palette='viridis', ax=ax) + ax.set_title(f'{metric.replace("_", " ").title()} by Cluster') + ax.set_xlabel('Cluster') + ax.set_ylabel(metric.replace("_", " ").title()) + + # Statistical test for differences between clusters + groups = [complete_data[complete_data['cluster'] == c][metric].dropna() for c in range(optimal_n_clusters)] + groups = [g for g in groups if len(g) > 0] + + if len(groups) > 1: + try: + f_stat, p_value = f_oneway(*groups) + test_name = "ANOVA" + except: + try: + h_stat, p_value = kruskal(*groups) + test_name = "Kruskal-Wallis" + except: + test_name = "Test failed" + p_value = 1.0 + + if p_value < 0.001: + p_text = f"{test_name}: p < 0.001" + elif p_value < 0.01: + p_text = f"{test_name}: p < 0.01" + elif p_value < 0.05: + p_text = f"{test_name}: p < 0.05" + else: + p_text = f"{test_name}: p = {p_value:.3f}" + + ax.text(0.05, 0.95, p_text, transform=ax.transAxes, fontsize=9, + verticalalignment='top', bbox=dict(boxstyle='round', facecolor='white', alpha=0.7)) + +for i in range(n_metrics, len(axes)): + axes[i].set_visible(False) + +plt.tight_layout(rect=[0, 0.03, 1, 0.97]) +plt.savefig(f'{output_dir}/behavioral_by_cluster.png', dpi=300, bbox_inches='tight') +plt.close() + +cluster_summary = complete_data.groupby('cluster').agg({ + 'age': ['mean', 'std', 'count'], + 'switch_rate': ['mean', 'std'], + 'stay_after_reward': ['mean', 'std'], + 'perseveration': ['mean', 'std'], + 'avg_reward': ['mean', 'std'], + 'n_trials': ['mean', 'std'] +}) + +cluster_summary.to_csv(f'{output_dir}/cluster_summary_statistics.csv') + +# : Feature correlation analysis +corr_data = [] + +for feature in behavioral_metrics + ['age']: + if feature in complete_data.columns: + try: + rho, p = spearmanr(complete_data['cluster'], complete_data[feature]) + corr_data.append({ + 'Feature': feature, + 'Correlation': rho, + 'p-value': p + }) + except: + print(f"Correlation calculation failed for {feature}") + +if corr_data: + corr_df = pd.DataFrame(corr_data) + corr_df = corr_df.sort_values('Correlation', key=abs, ascending=False) + + # Create correlation barplot + plt.figure(figsize=(12, 8)) + colors = ['blue' if x >= 0 else 'red' for x in corr_df['Correlation']] + bars = plt.barh(corr_df['Feature'], corr_df['Correlation'], color=colors) + + # Add significance stars + for i, p in enumerate(corr_df['p-value']): + if p < 0.05: + x_pos = corr_df['Correlation'].iloc[i] + (0.05 if corr_df['Correlation'].iloc[i] >= 0 else -0.05) + plt.text(x_pos, i, '*', ha='center', va='center', fontsize=12) + + plt.axvline(x=0, color='gray', linestyle='-', alpha=0.7) + plt.xlabel('Spearman Correlation with Cluster') + plt.title('Feature Importance for Cluster Differentiation') + plt.grid(True, axis='x', alpha=0.3) + plt.tight_layout() + plt.savefig(f'{output_dir}/cluster_feature_importance.png', dpi=300, bbox_inches='tight') + plt.close() + + corr_df.to_csv(f'{output_dir}/cluster_feature_correlations.csv', index=False) + +# Radar chart for cluster profiles +radar_metrics = behavioral_metrics + ['age'] +cluster_radar_data = [] + +for cluster_id in range(optimal_n_clusters): + cluster_data = complete_data[complete_data['cluster'] == cluster_id] + if len(cluster_data) > 0: + cluster_values = [] + for metric in radar_metrics: + if metric in cluster_data.columns: + metric_mean = cluster_data[metric].mean() + metric_std = complete_data[metric].std() + metric_mean_overall = complete_data[metric].mean() + + if metric_std > 0: + z_score = (metric_mean - metric_mean_overall) / metric_std + else: + z_score = 0 + + cluster_values.append(z_score) + else: + cluster_values.append(0) + + cluster_radar_data.append(cluster_values) + +# Create radar chart +if cluster_radar_data: + angles = np.linspace(0, 2*np.pi, len(radar_metrics), endpoint=False).tolist() + angles += angles[:1] + + fig, ax = plt.subplots(figsize=(10, 10), subplot_kw=dict(polar=True)) + + for i, values in enumerate(cluster_radar_data): + values = values + values[:1] + ax.plot(angles, values, linewidth=2, label=f'Cluster {i} (n={len(complete_data[complete_data["cluster"] == i])})') + ax.fill(angles, values, alpha=0.1) + + ax.set_xticks(angles[:-1]) + ax.set_xticklabels([m.replace('_', ' ').title() for m in radar_metrics]) + ax.set_title('Cluster Profiles (Z-scores relative to population mean)', size=15, pad=20) + ax.grid(True) + plt.legend(loc='upper right', bbox_to_anchor=(1.2, 1.0)) + + plt.tight_layout() + plt.savefig(f'{output_dir}/cluster_profiles_radar.png', dpi=300, bbox_inches='tight') + plt.close() + +# : PCA overlay plots with behavioral metrics +n_metrics = len(behavioral_metrics) + 1 +n_cols = 3 +n_rows = (n_metrics + n_cols - 1) // n_cols + +fig, axes = plt.subplots(n_rows, n_cols, figsize=(18, 15)) +fig.suptitle('Behavioral Metrics Mapped onto RNN Embedding Space (Age ≤ 45)', fontsize=16) + +if n_rows == 1: + axes = [axes] +else: + axes = axes.flatten() + +for i, metric in enumerate(behavioral_metrics + ['age']): + if i < len(axes) and metric in complete_data.columns: + ax = axes[i] + + scatter = ax.scatter(pca_result[:, 0], pca_result[:, 1], + c=complete_data[metric], cmap='coolwarm', s=80, alpha=0.8) + + # Add cluster centers + for cluster_idx in range(optimal_n_clusters): + cluster_points = pca_result[complete_data['cluster'] == cluster_idx] + if len(cluster_points) > 0: + center = cluster_points.mean(axis=0) + ax.text(center[0], center[1], str(cluster_idx), + fontsize=16, ha='center', va='center', + bbox=dict(boxstyle='circle', facecolor='white', alpha=0.7)) + + ax.set_xlabel(f'PCA Component 1 ({pca.explained_variance_ratio_[0]:.2%} variance)') + ax.set_ylabel(f'PCA Component 2 ({pca.explained_variance_ratio_[1]:.2%} variance)') + ax.set_title(f'PCA Projection Colored by {metric.replace("_", " ").title()}') + + # Add colorbar for each subplot + plt.colorbar(scatter, ax=ax, label=metric.replace("_", " ").title(), shrink=0.8) + ax.grid(True, alpha=0.3) + +# Hide unused subplots +for i in range(n_metrics, len(axes)): + axes[i].set_visible(False) + +plt.tight_layout(rect=[0, 0.03, 1, 0.97]) +plt.savefig(f'{output_dir}/pca_with_metrics_overlay.png', dpi=300, bbox_inches='tight') +plt.close() + +# Cluster centers analysis +cluster_centers = kmeans.cluster_centers_ +cluster_centers_df = pd.DataFrame(cluster_centers, columns=embedding_cols) +cluster_centers_df['cluster'] = range(optimal_n_clusters) + +cluster_centers_melted = pd.melt(cluster_centers_df, id_vars=['cluster'], + value_vars=embedding_cols, + var_name='Embedding_Dimension', + value_name='Value') + +plt.figure(figsize=(14, 8)) +sns.lineplot(x='Embedding_Dimension', y='Value', hue='cluster', data=cluster_centers_melted, + palette='viridis', marker='o') +plt.title('Cluster Centers across Embedding Dimensions') +plt.xticks(rotation=90) +plt.legend(title='Cluster') +plt.grid(True, alpha=0.3) +plt.tight_layout() +plt.savefig(f'{output_dir}/cluster_centers_by_dimension.png', dpi=300, bbox_inches='tight') +plt.close() + +# Hierarchical clustering dendrogram +if len(complete_data) > 1: + Z = linkage(complete_data[embedding_cols], method='ward') + + plt.figure(figsize=(15, 8)) + dendrogram( + Z, + truncate_mode='lastp', + p=optimal_n_clusters * 2, + leaf_rotation=90., + leaf_font_size=12., + show_contracted=True, + color_threshold=0.7 * max(Z[:, 2]) if len(Z) > 0 else None + ) + plt.title('Hierarchical Clustering Dendrogram') + plt.xlabel('Sample Index or (Cluster Size)') + plt.ylabel('Distance') + plt.tight_layout() + plt.savefig(f'{output_dir}/hierarchical_clustering.png', dpi=300, bbox_inches='tight') + plt.close() + diff --git a/analysis/participants5.py b/analysis/participants5.py new file mode 100644 index 00000000..04915a63 --- /dev/null +++ b/analysis/participants5.py @@ -0,0 +1,77 @@ +""" +For each SINDy coefficient column, plots its value vs. four behavioral metrics +(switch_rate, stay_after_reward, perseveration, avg_reward) in a 2×2 grid. +Points are color‐coded by participant age, and only participants ≤45 years old are included. +""" + +import pandas as pd +import matplotlib.pyplot as plt +from pathlib import Path +import numpy as np + +def main(): + file_path = Path('AAAAsindy_analysis_with_metrics.csv') + if not file_path.exists(): + raise FileNotFoundError(f"{file_path} not found—update `file_path` to your CSV location.") + df = pd.read_csv(file_path) + + age_col = 'slcn_age - years' + if age_col not in df.columns: + raise KeyError(f"Column '{age_col}' not found in data.") + df = df[df[age_col] <= 45].copy() + df['age'] = df[age_col] + + #just so the rest will be corelated with 4 behavs + exclude = [ + 'participant_id', age_col, + 'switch_rate', 'stay_after_reward', 'perseveration', 'avg_reward', + 'beta_reward', 'beta_choice', 'params_', 'total_params', + 'nll_', 'trial_likelihood_', 'bic_', 'aic_', + 'n_parameters_', 'metric_n_trials', 'embedding_', 'n_trials' + ] + coeffs = [c for c in df.columns if not any(c.startswith(pref) for pref in exclude)] + behavioral = ['switch_rate', 'stay_after_reward', 'perseveration', 'avg_reward'] + + # normalization for colorbar + ages = df['age'].values + norm = plt.Normalize(vmin=ages.min(), vmax=ages.max()) + cmap = 'viridis' + + output_dir = Path('/Users/martynaplomecka/closedloop_rl/analysis/plots/new_plots') + output_dir.mkdir(parents=True, exist_ok=True) + + + for coeff in coeffs: + vals = df[coeff].values + if np.allclose(vals, 0): + continue + + fig, axes = plt.subplots(2, 2, figsize=(14, 10)) + axes = axes.flatten() + + for ax, metric in zip(axes, behavioral): + scatter = ax.scatter(vals, df[metric], c=ages, cmap=cmap, norm=norm, alpha=0.8) + ax.set_xlabel(coeff) + ax.set_ylabel(metric.replace('_', ' ').title()) + ax.set_title(f"{metric.replace('_', ' ').title()} vs {coeff}") + + # = room for colorbar + plt.subplots_adjust(left=0.08, right=0.85, top=0.92, bottom=0.08, + wspace=0.3, hspace=0.3) + + sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) + sm.set_array([]) + + cbar_ax = fig.add_axes([0.87, 0.15, 0.02, 0.7]) # [left, bottom, width, height] + cbar = fig.colorbar(sm, cax=cbar_ax) + cbar.set_label('Age', rotation=270, labelpad=15) + + fig.suptitle(f"{coeff} Coefficient vs Behavioral Metrics", fontsize=16) + + out_path = output_dir / f"{coeff}_vs_behavior.png" + fig.savefig(out_path, dpi=300, bbox_inches='tight') + plt.close(fig) + print(f"Saved {out_path}") + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/analysis/participants_1.py b/analysis/participants_1.py new file mode 100644 index 00000000..e7692187 --- /dev/null +++ b/analysis/participants_1.py @@ -0,0 +1,437 @@ +# Improved clustering analysis with clearer visualizations and explanations +# This code analyzes participant embeddings to find behavioral clusters + +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +import seaborn as sns +from sklearn.manifold import TSNE +from sklearn.preprocessing import StandardScaler +from sklearn.cluster import KMeans +import umap +from scipy.stats import pearsonr +import os + +plt.rcParams.update({ + 'figure.facecolor': 'white', + 'axes.facecolor': 'white', + 'font.size': 12, + 'axes.titlesize': 14, + 'axes.labelsize': 12, + 'xtick.labelsize': 10, + 'ytick.labelsize': 10, + 'legend.fontsize': 10 +}) + +output_dir = "/Users/martynaplomecka/closedloop_rl/analysis/plots/new_plots/clustering_embeddings" +os.makedirs(output_dir, exist_ok=True) + +df = pd.read_csv('AAAAsindy_analysis_with_metrics.csv') + +behavioral_metrics = ['switch_rate', 'stay_after_reward', 'perseveration', 'avg_reward'] +embedding_cols = [col for col in df.columns if col.startswith('embedding_')] + +complete_df = df.dropna(subset=behavioral_metrics + embedding_cols).copy() +complete_df = complete_df.reset_index(drop=True) + +print(f"Dataset: {len(complete_df)} participants, {len(embedding_cols)} embedding dimensions") + +# Extract and standardize embeddings +X_embeddings = complete_df[embedding_cols].values +participant_ids = complete_df['participant_id'].values +behaviors = complete_df[behavioral_metrics].copy() + +scaler = StandardScaler() +X_scaled = scaler.fit_transform(X_embeddings) + +#COR ANALYSIS +print("Calculating correlations between embeddings and behavioral metrics...") +correlations = [] +for metric in behavioral_metrics: + for col in embedding_cols: + r, p = pearsonr(complete_df[col], complete_df[metric]) + correlations.append({ + 'embedding': col, + 'behavioral_metric': metric, + 'correlation': r, + 'p_value': p + }) + +corr_df = pd.DataFrame(correlations) +corr_df['abs_corr'] = corr_df['correlation'].abs() +corr_df = corr_df.sort_values('abs_corr', ascending=False) + +print("\nTop 10 correlations between embeddings and behavioral metrics:") +print(corr_df.head(10)) + +# DIM RED + +# t-SNE +perplexity = min(30, max(5, len(complete_df)//4)) +tsne = TSNE(n_components=2, perplexity=perplexity, random_state=42, + learning_rate=200, n_iter=1000) +tsne_result = tsne.fit_transform(X_scaled) + +# UMAP +n_neighbors = min(15, max(3, len(complete_df)//5)) +umap_reducer = umap.UMAP(n_components=2, n_neighbors=n_neighbors, + min_dist=0.1, random_state=42) +umap_result = umap_reducer.fit_transform(X_scaled) + +# clustering + +from sklearn.metrics import silhouette_score +from scipy.spatial.distance import cdist + +# Test different numbers of clusters +max_clusters = min(10, len(complete_df)//10) # Don't test more than we can reasonably interpret? +cluster_range = range(2, max_clusters + 1) + +# Method 1: Elbow method (within-cluster sum of squares) +wcss = [] +for k in cluster_range: + kmeans_temp = KMeans(n_clusters=k, random_state=42, n_init=20) + kmeans_temp.fit(X_scaled) + wcss.append(kmeans_temp.inertia_) + +# Method 2: Silhouette analysis +silhouette_scores = [] +for k in cluster_range: + kmeans_temp = KMeans(n_clusters=k, random_state=42, n_init=20) + cluster_labels_temp = kmeans_temp.fit_predict(X_scaled) + silhouette_avg = silhouette_score(X_scaled, cluster_labels_temp) + silhouette_scores.append(silhouette_avg) + +# Find optimal k using silhouette score (higher is better) +optimal_k_silhouette = cluster_range[np.argmax(silhouette_scores)] + +# Calculate elbow point (look for the "knee" in the WCSS curve) +# Use second derivative to find the elbow +wcss_array = np.array(wcss) +if len(wcss_array) >= 3: + # Calculate second derivative + second_derivatives = np.diff(wcss_array, 2) + # Find the point where curvature changes most (elbow) + elbow_k = cluster_range[np.argmax(second_derivatives) + 2] # +2 because diff reduces array size +else: + elbow_k = 3 # Default fallback + +print(f"Cluster optimization results:") +print(f" Silhouette method suggests: {optimal_k_silhouette} clusters (score: {max(silhouette_scores):.3f})") +print(f" Elbow method suggests: {elbow_k} clusters") +print(f" Silhouette scores: {dict(zip(cluster_range, [f'{s:.3f}' for s in silhouette_scores]))}") + +# Choose the number of clusters (prioritize silhouette score but consider interpretability) +if max(silhouette_scores) > 0.3: # Good silhouette score + n_clusters = optimal_k_silhouette + selection_method = "silhouette analysis" +elif max(silhouette_scores) > 0.2: # Moderate silhouette score + # Choose between silhouette and elbow, prefer smaller number for interpretability + n_clusters = min(optimal_k_silhouette, elbow_k) + selection_method = "combined silhouette + elbow" +else: # Poor silhouette scores, use elbow or default + n_clusters = min(elbow_k, 4) # Cap at 4 for interpretability + selection_method = "elbow method (poor silhouette scores)" + +print(f"\nSelected {n_clusters} clusters using {selection_method}") + +# Final clustering with optimal number +kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=20) +cluster_labels = kmeans.fit_predict(X_scaled) + +# Visualize cluster selection process +fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5)) + +# Plot elbow curve +ax1.plot(cluster_range, wcss, 'bo-', linewidth=2, markersize=8) +ax1.axvline(x=elbow_k, color='red', linestyle='--', alpha=0.7, label=f'Elbow at k={elbow_k}') +ax1.set_xlabel('Number of Clusters (k)') +ax1.set_ylabel('Within-Cluster Sum of Squares') +ax1.set_title('Elbow Method for Optimal k') +ax1.grid(True, alpha=0.3) +ax1.legend() + +# Plot silhouette scores +ax2.plot(cluster_range, silhouette_scores, 'go-', linewidth=2, markersize=8) +ax2.axvline(x=optimal_k_silhouette, color='red', linestyle='--', alpha=0.7, + label=f'Best silhouette at k={optimal_k_silhouette}') +ax2.axhline(y=0.3, color='orange', linestyle=':', alpha=0.7, label='Good threshold (0.3)') +ax2.axhline(y=0.2, color='yellow', linestyle=':', alpha=0.7, label='Fair threshold (0.2)') +ax2.set_xlabel('Number of Clusters (k)') +ax2.set_ylabel('Average Silhouette Score') +ax2.set_title('Silhouette Analysis for Optimal k') +ax2.grid(True, alpha=0.3) +ax2.legend() + +plt.tight_layout() +plt.savefig(os.path.join(output_dir, 'cluster_optimization.png'), + dpi=300, bbox_inches='tight', facecolor='white') +plt.show() + +# Create results dataframe +results_df = pd.DataFrame({ + 'participant_id': participant_ids, + 'tsne_x': tsne_result[:, 0], + 'tsne_y': tsne_result[:, 1], + 'umap_x': umap_result[:, 0], + 'umap_y': umap_result[:, 1], + 'cluster': cluster_labels +}) + +# Add behavioral metrics +for metric in behavioral_metrics: + results_df[metric] = complete_df[metric].values + +# === ANALYZE CLUSTERS === +print("\nAnalyzing cluster characteristics...") + +cluster_stats = [] +for cluster in range(n_clusters): + cluster_data = results_df[results_df['cluster'] == cluster] + stats = {'cluster': cluster, 'n_participants': len(cluster_data)} + + for metric in behavioral_metrics: + stats[f'{metric}_mean'] = cluster_data[metric].mean() + stats[f'{metric}_std'] = cluster_data[metric].std() + + cluster_stats.append(stats) + +cluster_stats_df = pd.DataFrame(cluster_stats) +print("\nCluster Summary:") +print(cluster_stats_df.round(3)) + +# === IMPROVED VISUALIZATIONS === + +# 1. Main clustering visualization (larger, clearer) +fig, axes = plt.subplots(1, 2, figsize=(16, 7)) + +# t-SNE clusters +scatter1 = axes[0].scatter(results_df['tsne_x'], results_df['tsne_y'], + c=results_df['cluster'], cmap='tab10', + s=60, alpha=0.7, edgecolors='black', linewidth=0.5) +axes[0].set_title('t-SNE: Participant Clusters\n(Similar participants are close together)', + fontsize=14, pad=20) +axes[0].set_xlabel('t-SNE Dimension 1') +axes[0].set_ylabel('t-SNE Dimension 2') +axes[0].grid(True, alpha=0.3) + +# Add cluster labels +for cluster in range(n_clusters): + cluster_data = results_df[results_df['cluster'] == cluster] + center_x = cluster_data['tsne_x'].mean() + center_y = cluster_data['tsne_y'].mean() + axes[0].annotate(f'Cluster {cluster}', (center_x, center_y), + fontsize=12, fontweight='bold', + bbox=dict(boxstyle="round,pad=0.3", facecolor='white', alpha=0.8)) + +# UMAP clusters +scatter2 = axes[1].scatter(results_df['umap_x'], results_df['umap_y'], + c=results_df['cluster'], cmap='tab10', + s=60, alpha=0.7, edgecolors='black', linewidth=0.5) +axes[1].set_title('UMAP: Participant Clusters\n(Alternative view of the same clusters)', + fontsize=14, pad=20) +axes[1].set_xlabel('UMAP Dimension 1') +axes[1].set_ylabel('UMAP Dimension 2') +axes[1].grid(True, alpha=0.3) + +# Add cluster labels for UMAP +for cluster in range(n_clusters): + cluster_data = results_df[results_df['cluster'] == cluster] + center_x = cluster_data['umap_x'].mean() + center_y = cluster_data['umap_y'].mean() + axes[1].annotate(f'Cluster {cluster}', (center_x, center_y), + fontsize=12, fontweight='bold', + bbox=dict(boxstyle="round,pad=0.3", facecolor='white', alpha=0.8)) + +# Add colorbar +cbar = plt.colorbar(scatter1, ax=axes, orientation='horizontal', + fraction=0.05, pad=0.1, shrink=0.8) +cbar.set_label('Cluster ID', fontsize=12) +cbar.set_ticks(range(n_clusters)) + +plt.tight_layout() +plt.savefig(os.path.join(output_dir, 'clear_clustering_overview.png'), + dpi=300, bbox_inches='tight', facecolor='white') +plt.show() + +# 2. Behavioral differences between clusters (clearer visualization) +fig, axes = plt.subplots(2, 2, figsize=(15, 12)) +axes = axes.flatten() + +# Create better behavioral metric names for display +metric_names = { + 'switch_rate': 'Switch Rate', + 'stay_after_reward': 'Stay After Reward', + 'perseveration': 'Perseveration', + 'avg_reward': 'Average Reward' +} + +colors = plt.cm.Set3(np.linspace(0, 1, n_clusters)) + +for i, metric in enumerate(behavioral_metrics): + ax = axes[i] + + # Create violin plot for better distribution visualization + parts = ax.violinplot([results_df[results_df['cluster'] == c][metric].values + for c in range(n_clusters)], + positions=range(n_clusters), showmeans=True, showmedians=True) + + # Color the violin plots + for pc, color in zip(parts['bodies'], colors): + pc.set_facecolor(color) + pc.set_alpha(0.7) + + # Add individual points + for cluster in range(n_clusters): + cluster_data = results_df[results_df['cluster'] == cluster][metric] + x_pos = [cluster] * len(cluster_data) + ax.scatter(x_pos, cluster_data, alpha=0.4, s=20, color='black') + + ax.set_title(metric_names[metric], fontsize=12, pad=15) + ax.set_xlabel('Cluster ID') + ax.set_ylabel('Value') + ax.set_xticks(range(n_clusters)) + ax.grid(True, alpha=0.3) + + # Add statistical annotations + for cluster in range(n_clusters): + cluster_data = results_df[results_df['cluster'] == cluster][metric] + mean_val = cluster_data.mean() + ax.text(cluster, ax.get_ylim()[1] * 0.95, f'μ={mean_val:.2f}', + ha='center', fontsize=10, fontweight='bold') + +plt.suptitle('How Do Clusters Differ in Behavior?\n', + fontsize=16, y=0.98) +plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Fix tight_layout warning +plt.savefig(os.path.join(output_dir, 'clear_behavioral_differences.png'), + dpi=300, bbox_inches='tight', facecolor='white') +plt.show() + +# 3. Show behavioral patterns in embedding space +fig, axes = plt.subplots(2, 2, figsize=(16, 12)) +axes = axes.flatten() + +for i, metric in enumerate(behavioral_metrics): + ax = axes[i] + + # Use t-SNE coordinates colored by behavioral metric + scatter = ax.scatter(results_df['tsne_x'], results_df['tsne_y'], + c=results_df[metric], cmap='RdYlBu_r', + s=50, alpha=0.8, edgecolors='black', linewidth=0.3) + + ax.set_title(f'{metric_names[metric]}\n(Color shows metric value)', fontsize=12) + ax.set_xlabel('t-SNE Dimension 1') + ax.set_ylabel('t-SNE Dimension 2') + ax.grid(True, alpha=0.3) + + # Add colorbar + cbar = plt.colorbar(scatter, ax=ax, shrink=0.8) + cbar.set_label(metric, fontsize=10) + +plt.suptitle('Where Do Different Behaviors Appear in Embedding Space?\n', + fontsize=16, y=0.98) +plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Fix tight_layout warning +plt.savefig(os.path.join(output_dir, 'behavioral_patterns_in_space.png'), + dpi=300, bbox_inches='tight', facecolor='white') +plt.show() + +# === CORRELATION HEATMAP (from your original code) === +print("Creating correlation heatmap...") +plt.figure(figsize=(14, 8)) + +# Pivot the correlation dataframe for heatmap +pivot_df = corr_df.pivot(index='behavioral_metric', columns='embedding', values='correlation') + +# Select top correlations for readability +top_embeddings = corr_df.sort_values('abs_corr', ascending=False)['embedding'].unique()[:min(15, len(embedding_cols))] +pivot_subset = pivot_df[top_embeddings] + +# Create heatmap with better formatting +sns.heatmap(pivot_subset, cmap='RdBu_r', annot=True, fmt=".3f", center=0, + cbar_kws={'shrink': 0.8, 'label': 'Correlation Coefficient'}, + linewidths=0.5, square=False) + +plt.title('Correlation Between Top Embedding Dimensions and Behavioral Metrics\n', + fontsize=14, pad=20) +plt.xlabel('Embedding Dimensions', fontsize=12) +plt.ylabel('Behavioral Metrics', fontsize=12) +plt.xticks(rotation=45, ha='right') +plt.yticks(rotation=0) +plt.tight_layout() +plt.savefig(os.path.join(output_dir, 'correlation_heatmap.png'), + dpi=300, bbox_inches='tight', facecolor='white') +plt.show() + +# === DETAILED CORRELATION ANALYSIS === +print("\n" + "="*60) +print("CORRELATION ANALYSIS RESULTS") +print("="*60) + +# Show strongest correlations for each behavioral metric +for metric in behavioral_metrics: + metric_corrs = corr_df[corr_df['behavioral_metric'] == metric].sort_values('abs_corr', ascending=False) + strongest = metric_corrs.iloc[0] + print(f"\n{metric.upper()}:") + print(f" Strongest correlation: {strongest['embedding']} (r = {strongest['correlation']:.3f}, p = {strongest['p_value']:.3f})") + + # Show top 3 correlations for this metric + print(f" Top 3 embedding correlations:") + for i in range(min(3, len(metric_corrs))): + row = metric_corrs.iloc[i] + print(f" {i+1}. {row['embedding']}: r = {row['correlation']:.3f} (p = {row['p_value']:.3f})") + +# Significant correlations summary +significant_corrs = corr_df[corr_df['p_value'] < 0.05] +print(f"\nSIGNIFICANT CORRELATIONS (p < 0.05): {len(significant_corrs)} out of {len(corr_df)}") +strong_corrs = significant_corrs[significant_corrs['abs_corr'] > 0.3] +print(f"STRONG CORRELATIONS (|r| > 0.3): {len(strong_corrs)}") + +if len(strong_corrs) > 0: + print("\nStrongest significant correlations:") + for i, (_, row) in enumerate(strong_corrs.head(5).iterrows()): + print(f" {i+1}. {row['embedding']} ↔ {row['behavioral_metric']}: r = {row['correlation']:.3f} (p = {row['p_value']:.3f})") + +# === SUMMARY STATISTICS === +print("\n" + "="*60) +print("CLUSTERING ANALYSIS SUMMARY") +print("="*60) +print(f"• Analyzed {len(complete_df)} participants") +print(f"• Found {n_clusters} distinct behavioral clusters") +print(f"• Used {len(embedding_cols)} embedding dimensions") + +print(f"\nCluster Sizes:") +for cluster in range(n_clusters): + count = len(results_df[results_df['cluster'] == cluster]) + percentage = (count / len(results_df)) * 100 + print(f" Cluster {cluster}: {count} participants ({percentage:.1f}%)") + +print("• Clusters represent groups of participants with similar neural embedding patterns") +print("• Each cluster shows different behavioral tendencies") +print("• This suggests that neural patterns predict behavioral strategies") + +# Calculate the most distinctive behavioral differences between clusters +print(f"\nMost Distinctive Behavioral Differences Between Clusters:") +for metric in behavioral_metrics: + cluster_means = [results_df[results_df['cluster'] == c][metric].mean() + for c in range(n_clusters)] + max_diff = max(cluster_means) - min(cluster_means) + best_cluster = cluster_means.index(max(cluster_means)) + worst_cluster = cluster_means.index(min(cluster_means)) + print(f" {metric}: {max_diff:.3f} difference (Cluster {worst_cluster}: {min(cluster_means):.3f} → Cluster {best_cluster}: {max(cluster_means):.3f})") + + + + + + +# Overall analysis interpretation +print(f"\nOVERALL INTERPRETATION:") +print(f"• Strongest embedding-behavior correlation: r = {corr_df.iloc[0]['correlation']:.3f}") +print(f" ({corr_df.iloc[0]['embedding']} ↔ {corr_df.iloc[0]['behavioral_metric']})") +print(f"• Number of significant correlations: {len(significant_corrs)}/{len(corr_df)} ({len(significant_corrs)/len(corr_df)*100:.1f}%)") + +if len(strong_corrs) > 0: + print(f"• Strong correlations found: Neural embeddings DO predict behavior") +else: + print(f"• Few strong correlations: Neural embeddings may not strongly predict behavior") + diff --git a/analysis/participants_preparation.py b/analysis/participants_preparation.py new file mode 100644 index 00000000..a9a49f95 --- /dev/null +++ b/analysis/participants_preparation.py @@ -0,0 +1,270 @@ +# to jest dobre!!! + +import sys +import os +import pandas as pd +import numpy as np +import torch +from tqdm import tqdm + +sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) +import pipeline_sindy +from resources.model_evaluation import log_likelihood, bayesian_information_criterion +from resources.bandits import get_update_dynamics +from utils.convert_dataset import convert_dataset +from resources.rnn_utils import DatasetRNN + + +data_path = 'data/eckstein2022/eckstein2022.csv' +original_df = pd.read_csv(data_path) +unique_sessions = original_df['session'].unique() +slcn_path = '/Users/martynaplomecka/closedloop_rl/data/eckstein2022/SLCNinfo_Share.csv' +slcn_df = pd.read_csv(slcn_path) +columns_to_keep = ['ID', 'age - years'] +available_columns = [col for col in columns_to_keep if col in slcn_df.columns] +slcn_df = slcn_df[available_columns] + +# mapping using ID as key +slcn_mapping = {} +for _, row in slcn_df.iterrows(): + slcn_mapping[row['ID']] = row.to_dict() + +behavior_metrics = [] + +for pid in tqdm(unique_sessions): + participant_df = original_df[original_df['session'] == pid] + if participant_df.empty: + continue + + choices = participant_df['choice'].values + n_switches = np.sum(np.abs(np.diff(choices))) + switch_rate = n_switches / (len(choices) - 1) if len(choices) > 1 else 0 + + # stay after reward rate + stay_after_reward_count = 0 + stay_after_reward_total = 0 + for i in range(len(choices) - 1): + current_choice = choices[i] + next_choice = choices[i+1] + current_reward = participant_df['reward'].iloc[i] + if current_reward > 0: + stay_after_reward_total += 1 + if next_choice == current_choice: + stay_after_reward_count += 1 + stay_after_reward_rate = stay_after_reward_count / stay_after_reward_total if stay_after_reward_total > 0 else 0 + + perseveration = np.mean(choices[:-1] == choices[1:]) if len(choices) > 1 else 0 + avg_reward = participant_df['reward'].mean() + + participant_data = { + 'participant_id': pid, + 'switch_rate': switch_rate, + 'stay_after_reward': stay_after_reward_rate, + 'perseveration': perseveration, + 'avg_reward': avg_reward, + 'n_trials': len(participant_df) + } + + # SLCN info + if pid in slcn_mapping: + slcn_info = slcn_mapping[pid] + for key, value in slcn_info.items(): + if key == 'age - years': + participant_data[f'slcn_{key}'] = value + elif key == 'age_category': + participant_data['age_category'] = value + + behavior_metrics.append(participant_data) + +behavior_df = pd.DataFrame(behavior_metrics) + +# Run SINDY pipeline +agent_spice, features, loss, participant_ids = pipeline_sindy.main( + model='params/eckstein2022/rnn_eckstein2022_l1_0_0001_l2_0_0001.pkl', + data='data/eckstein2022/eckstein2022.csv', + save=True, + participant_id=None, + filter_bad_participants=True, + use_optuna=False, + polynomial_degree=1, + optimizer_alpha=0.1, + optimizer_threshold=0.05, + n_trials_off_policy=1000, + n_sessions_off_policy=1, + verbose=True, + n_actions=2, + sigma=0.2, + beta_reward=1., + alpha=0.25, + alpha_penalty=0.25, + forget_rate=0., + confirmation_bias=0., + beta_choice=1., + alpha_choice=1., + counterfactual=False, + alpha_counterfactual=0., + analysis=False, + get_loss=True, +) + +list_rnn_modules = [ + 'x_learning_rate_reward', + 'x_value_reward_not_chosen', + 'x_value_choice_chosen', + 'x_value_choice_not_chosen' +] + +# Map indices to real participant IDs +index_to_pid = {} +for i, idx in enumerate(unique_sessions): + if i in participant_ids: + index_to_pid[i] = idx + +print(f"Total unique sessions: {len(unique_sessions)}") +print(f"Valid participants after filtering: {len(participant_ids)}") +print(f"Valid index to pid mappings: {len(index_to_pid)}") + +# Get unique feature names across all SINDY modules +all_feature_names = set() +for module in list_rnn_modules: + for idx in agent_spice._model.submodules_sindy[module]: + sindy_model = agent_spice._model.submodules_sindy[module][idx] + for name in sindy_model.get_feature_names(): + all_feature_names.add(f"{module}_{name}") + +# Extract embeddings +embedding_matrix = agent_spice._model.participant_embedding.weight.detach().cpu().numpy() +embedding_size = embedding_matrix.shape[1] + +# Create SINDY parameters dataframe +sindy_params = [] +for idx in tqdm(participant_ids): + if idx not in index_to_pid: + print(f"Warning: Index {idx} not found in mapping") + continue + pid = index_to_pid[idx] + param_dict = {'participant_id': pid} + param_dict.update({feature: 0.0 for feature in all_feature_names}) + param_dict['beta_reward'] = features['beta_reward'].get(idx, 0.0) + param_dict['beta_choice'] = features['beta_choice'].get(idx, 0.0) + for module in list_rnn_modules: + if idx in agent_spice._model.submodules_sindy[module]: + model = agent_spice._model.submodules_sindy[module][idx] + coefs = model.model.steps[-1][1].coef_.flatten() + for i, name in enumerate(model.get_feature_names()): + param_dict[f"{module}_{name}"] = coefs[i] + param_dict[f"params_{module}"] = np.sum(np.abs(coefs) > 1e-10) + param_dict['total_params'] = sum(param_dict.get(f"params_{m}", 0) for m in list_rnn_modules) + if idx < embedding_matrix.shape[0]: + for j in range(embedding_size): + param_dict[f'embedding_{j}'] = embedding_matrix[idx, j] + sindy_params.append(param_dict) +sindy_df = pd.DataFrame(sindy_params) + +print(f"Number of participants in SINDY df: {len(sindy_df)}") +print(f"Number of participants in behavior df: {len(behavior_df)}") + +# Merge SINDY and behavior dataframes +final_df = pd.merge(sindy_df, behavior_df, on='participant_id', how='left') +print(f"Number of participants in final merged df: {len(final_df)}") + +missing_behavior = set(sindy_df['participant_id']) - set(behavior_df['participant_id']) +if missing_behavior: + print(f"Warning: {len(missing_behavior)} participants in SINDY have no behavioral data") + +# Add filtered_out flag +total_pids = set(behavior_df['participant_id']) +filtered_pids = total_pids - set(index_to_pid.values()) +behavior_df['filtered_out'] = behavior_df['participant_id'].apply(lambda x: x in filtered_pids) + +# Load dataset for model evaluation metrics +dataset_test, _, _, _ = convert_dataset(data_path) + +from utils.setup_agents import setup_agent_rnn +agent_rnn = setup_agent_rnn( + path_model='params/eckstein2022/rnn_eckstein2022_l1_0_0001_l2_0_0001.pkl', + list_sindy_signals=list_rnn_modules + ['c_action', 'c_reward', 'c_value_reward', 'c_value_choice'], +) + +# Calculate model evaluation metrics per participant +metrics_data = [] +for idx in tqdm(participant_ids): + if idx not in index_to_pid: + continue + real_pid = index_to_pid[idx] + mask = dataset_test.xs[:, 0, -1] == idx + if not mask.any(): + continue + participant_data = DatasetRNN(*dataset_test[mask]) + + # Reset agents, check with Daniel + agent_spice.new_sess(participant_id=idx) + agent_rnn.new_sess(participant_id=idx) + + # Fixed unpacking of get_update_dynamics + _, probs_spice, _ = get_update_dynamics( + experiment=participant_data.xs, agent=agent_spice + ) + _, probs_rnn, _ = get_update_dynamics( + experiment=participant_data.xs, agent=agent_rnn + ) + n_trials_test = len(probs_spice) + + if n_trials_test == 0: + continue + + ll_spice = log_likelihood( + data=participant_data.ys[0, :n_trials_test].cpu().numpy(), + probs=probs_spice + ) + ll_rnn = log_likelihood( + data=participant_data.ys[0, :n_trials_test].cpu().numpy(), + probs=probs_rnn + ) + + spice_per_trial_likelihood = np.exp(ll_spice/(n_trials_test * agent_rnn._n_actions)) + rnn_per_trial_likelihood = np.exp(ll_rnn/(n_trials_test * agent_rnn._n_actions)) + + n_params_dict = agent_spice.count_parameters( + mapping_modules_values={m: 'x_value_choice' if 'choice' in m else 'x_value_reward' + for m in agent_spice._model.submodules_sindy} + ) + if idx not in n_params_dict: + continue + n_parameters_spice = n_params_dict[idx] + + bic_spice = bayesian_information_criterion( + data=participant_data.ys[0, :n_trials_test].cpu().numpy(), + probs=probs_spice, + n_parameters=n_parameters_spice + ) + aic_spice = 2 * n_parameters_spice - 2 * ll_spice + + metrics_data.append({ + 'participant_id': real_pid, + 'nll_spice': -ll_spice, + 'nll_rnn': -ll_rnn, + 'trial_likelihood_spice': spice_per_trial_likelihood, + 'trial_likelihood_rnn': rnn_per_trial_likelihood, + 'bic_spice': bic_spice, + 'aic_spice': aic_spice, + 'n_parameters_spice': n_parameters_spice, + 'metric_n_trials': n_trials_test + }) + +metrics_df = pd.DataFrame(metrics_data) +print(f"Number of participants with metrics: {len(metrics_df)}") + +final_df = pd.merge(final_df, metrics_df, on='participant_id', how='left') +print(f"Number of participants in final merged df with metrics: {len(final_df)}") + +# Filter out participants older than 45 and younger than 8 +age_filter = (final_df['slcn_age - years'] >= 8) & (final_df['slcn_age - years'] <= 45) +final_df = final_df[age_filter] + +print(f"Number of participants after age filtering (8-45 years): {len(final_df)}") + + + +final_df.to_csv('AAAAsindy_analysis_with_metrics.csv', index=False) +behavior_df.to_csv('behavior_metrics_with_filter_status.csv', index=False) \ No newline at end of file diff --git a/analysis/plots/age_correlations_summary.csv b/analysis/plots/age_correlations_summary.csv new file mode 100644 index 00000000..4b64b6da --- /dev/null +++ b/analysis/plots/age_correlations_summary.csv @@ -0,0 +1,7 @@ +Metric,Correlation,p-value,n +Negative Log-Likelihood (SPICE),-0.06045012823529479,0.32601750208939495,266 +Negative Log-Likelihood (RNN),-0.06811781375382495,0.2682843376668467,266 +Trial Likelihood (SPICE),0.04832999110708129,0.43246237358660244,266 +Trial Likelihood (RNN),0.049455622559424456,0.4218072174883928,266 +BIC (SPICE),-0.06216565258653517,0.3124504719579594,266 +AIC (SPICE),-0.061074449287921155,0.3210366987736371,266 diff --git a/analysis/plots/age_vs_aic_spice.png b/analysis/plots/age_vs_aic_spice.png new file mode 100644 index 00000000..5889e5cf Binary files /dev/null and b/analysis/plots/age_vs_aic_spice.png differ diff --git a/analysis/plots/age_vs_bic_spice.png b/analysis/plots/age_vs_bic_spice.png new file mode 100644 index 00000000..8f2e5553 Binary files /dev/null and b/analysis/plots/age_vs_bic_spice.png differ diff --git a/analysis/plots/age_vs_model_metrics.png b/analysis/plots/age_vs_model_metrics.png new file mode 100644 index 00000000..3130d4a7 Binary files /dev/null and b/analysis/plots/age_vs_model_metrics.png differ diff --git a/analysis/plots/age_vs_nll_rnn.png b/analysis/plots/age_vs_nll_rnn.png new file mode 100644 index 00000000..efc08fdd Binary files /dev/null and b/analysis/plots/age_vs_nll_rnn.png differ diff --git a/analysis/plots/age_vs_nll_spice.png b/analysis/plots/age_vs_nll_spice.png new file mode 100644 index 00000000..5e522d9e Binary files /dev/null and b/analysis/plots/age_vs_nll_spice.png differ diff --git a/analysis/plots/age_vs_trial_likelihood_rnn.png b/analysis/plots/age_vs_trial_likelihood_rnn.png new file mode 100644 index 00000000..2c2cf543 Binary files /dev/null and b/analysis/plots/age_vs_trial_likelihood_rnn.png differ diff --git a/analysis/plots/age_vs_trial_likelihood_spice.png b/analysis/plots/age_vs_trial_likelihood_spice.png new file mode 100644 index 00000000..19e2942a Binary files /dev/null and b/analysis/plots/age_vs_trial_likelihood_spice.png differ diff --git a/analysis/plots/behavioral_vs_bic_aic_scatter.png b/analysis/plots/behavioral_vs_bic_aic_scatter.png new file mode 100644 index 00000000..dc960d2c Binary files /dev/null and b/analysis/plots/behavioral_vs_bic_aic_scatter.png differ diff --git a/analysis/plots/clustering_plots/behavioral_by_cluster.png b/analysis/plots/clustering_plots/behavioral_by_cluster.png new file mode 100644 index 00000000..cdf01369 Binary files /dev/null and b/analysis/plots/clustering_plots/behavioral_by_cluster.png differ diff --git a/analysis/plots/clustering_plots/cluster_centers_by_dimension.png b/analysis/plots/clustering_plots/cluster_centers_by_dimension.png new file mode 100644 index 00000000..1e93f51d Binary files /dev/null and b/analysis/plots/clustering_plots/cluster_centers_by_dimension.png differ diff --git a/analysis/plots/clustering_plots/cluster_feature_correlations.csv b/analysis/plots/clustering_plots/cluster_feature_correlations.csv new file mode 100644 index 00000000..a0f93a6e --- /dev/null +++ b/analysis/plots/clustering_plots/cluster_feature_correlations.csv @@ -0,0 +1,7 @@ +Feature,Correlation,p-value +stay_after_reward,0.6186842012007233,1.7205127232873935e-29 +avg_reward,0.4608701570282933,2.1555046308267775e-15 +switch_rate,-0.4590460840243745,2.8656293114671828e-15 +perseveration,0.4590460840243745,2.8656293114671828e-15 +age,0.21503828277884263,0.0004123339221402368 +n_trials,0.11850320518939754,0.053553072914755744 diff --git a/analysis/plots/clustering_plots/cluster_feature_importance.png b/analysis/plots/clustering_plots/cluster_feature_importance.png new file mode 100644 index 00000000..868a8bb1 Binary files /dev/null and b/analysis/plots/clustering_plots/cluster_feature_importance.png differ diff --git a/analysis/plots/clustering_plots/cluster_metrics.png b/analysis/plots/clustering_plots/cluster_metrics.png new file mode 100644 index 00000000..cf5711f4 Binary files /dev/null and b/analysis/plots/clustering_plots/cluster_metrics.png differ diff --git a/analysis/plots/clustering_plots/cluster_profiles_radar.png b/analysis/plots/clustering_plots/cluster_profiles_radar.png new file mode 100644 index 00000000..80b597e0 Binary files /dev/null and b/analysis/plots/clustering_plots/cluster_profiles_radar.png differ diff --git a/analysis/plots/clustering_plots/cluster_summary_statistics.csv b/analysis/plots/clustering_plots/cluster_summary_statistics.csv new file mode 100644 index 00000000..ccc8b1e2 --- /dev/null +++ b/analysis/plots/clustering_plots/cluster_summary_statistics.csv @@ -0,0 +1,5 @@ +,age,age,age,switch_rate,switch_rate,stay_after_reward,stay_after_reward,perseveration,perseveration,avg_reward,avg_reward,n_trials,n_trials +,mean,std,count,mean,std,mean,std,mean,std,mean,std,mean,std +cluster,,,,,,,,,,,,, +0,16.007308785166668,6.052894123179568,162,0.34119341944713183,0.11646908710752059,0.8931707088374355,0.09916584158428517,0.6588065805528681,0.11646908710752062,0.5376804964005385,0.061389923349002416,131.3148148148148,5.191335617492261 +1,18.445542634951924,6.050321622617838,104,0.22602921405139234,0.10337240081566183,0.9829403038434648,0.030306293169008253,0.7739707859486077,0.10337240081566185,0.590528382694165,0.040783082019010854,132.06730769230768,5.373911130307712 diff --git a/analysis/plots/clustering_plots/embedding_clusters.png b/analysis/plots/clustering_plots/embedding_clusters.png new file mode 100644 index 00000000..45a85cd8 Binary files /dev/null and b/analysis/plots/clustering_plots/embedding_clusters.png differ diff --git a/analysis/plots/clustering_plots/hierarchical_clustering.png b/analysis/plots/clustering_plots/hierarchical_clustering.png new file mode 100644 index 00000000..0c1ff278 Binary files /dev/null and b/analysis/plots/clustering_plots/hierarchical_clustering.png differ diff --git a/analysis/plots/clustering_plots/pca_with_metrics_overlay.png b/analysis/plots/clustering_plots/pca_with_metrics_overlay.png new file mode 100644 index 00000000..f136cdd2 Binary files /dev/null and b/analysis/plots/clustering_plots/pca_with_metrics_overlay.png differ diff --git a/analysis/plots/correlation_matrix.png b/analysis/plots/correlation_matrix.png new file mode 100644 index 00000000..ff23ad42 Binary files /dev/null and b/analysis/plots/correlation_matrix.png differ diff --git a/analysis/plots/new_plots/age_vs_behavior.png b/analysis/plots/new_plots/age_vs_behavior.png new file mode 100644 index 00000000..da917caf Binary files /dev/null and b/analysis/plots/new_plots/age_vs_behavior.png differ diff --git a/analysis/plots/new_plots/clustering_embeddings/behavioral_patterns_in_space.png b/analysis/plots/new_plots/clustering_embeddings/behavioral_patterns_in_space.png new file mode 100644 index 00000000..30d3bbdc Binary files /dev/null and b/analysis/plots/new_plots/clustering_embeddings/behavioral_patterns_in_space.png differ diff --git a/analysis/plots/new_plots/clustering_embeddings/clear_behavioral_differences.png b/analysis/plots/new_plots/clustering_embeddings/clear_behavioral_differences.png new file mode 100644 index 00000000..5e861057 Binary files /dev/null and b/analysis/plots/new_plots/clustering_embeddings/clear_behavioral_differences.png differ diff --git a/analysis/plots/new_plots/clustering_embeddings/clear_clustering_overview.png b/analysis/plots/new_plots/clustering_embeddings/clear_clustering_overview.png new file mode 100644 index 00000000..0608584d Binary files /dev/null and b/analysis/plots/new_plots/clustering_embeddings/clear_clustering_overview.png differ diff --git a/analysis/plots/new_plots/clustering_embeddings/cluster_optimization.png b/analysis/plots/new_plots/clustering_embeddings/cluster_optimization.png new file mode 100644 index 00000000..1a271b97 Binary files /dev/null and b/analysis/plots/new_plots/clustering_embeddings/cluster_optimization.png differ diff --git a/analysis/plots/new_plots/clustering_embeddings/correlation_heatmap.png b/analysis/plots/new_plots/clustering_embeddings/correlation_heatmap.png new file mode 100644 index 00000000..3f9d1706 Binary files /dev/null and b/analysis/plots/new_plots/clustering_embeddings/correlation_heatmap.png differ diff --git a/analysis/plots/new_plots/x_learning_rate_reward_1_vs_behavior.png b/analysis/plots/new_plots/x_learning_rate_reward_1_vs_behavior.png new file mode 100644 index 00000000..0e51e43f Binary files /dev/null and b/analysis/plots/new_plots/x_learning_rate_reward_1_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_learning_rate_reward_c_value_choice_vs_behavior.png b/analysis/plots/new_plots/x_learning_rate_reward_c_value_choice_vs_behavior.png new file mode 100644 index 00000000..b034b59a Binary files /dev/null and b/analysis/plots/new_plots/x_learning_rate_reward_c_value_choice_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_learning_rate_reward_x_learning_rate_reward_vs_behavior.png b/analysis/plots/new_plots/x_learning_rate_reward_x_learning_rate_reward_vs_behavior.png new file mode 100644 index 00000000..99d664b6 Binary files /dev/null and b/analysis/plots/new_plots/x_learning_rate_reward_x_learning_rate_reward_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_value_choice_chosen_1_vs_behavior.png b/analysis/plots/new_plots/x_value_choice_chosen_1_vs_behavior.png new file mode 100644 index 00000000..202bfb45 Binary files /dev/null and b/analysis/plots/new_plots/x_value_choice_chosen_1_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_value_choice_chosen_c_value_reward_vs_behavior.png b/analysis/plots/new_plots/x_value_choice_chosen_c_value_reward_vs_behavior.png new file mode 100644 index 00000000..bcb83fea Binary files /dev/null and b/analysis/plots/new_plots/x_value_choice_chosen_c_value_reward_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_value_choice_chosen_x_value_choice_chosen_vs_behavior.png b/analysis/plots/new_plots/x_value_choice_chosen_x_value_choice_chosen_vs_behavior.png new file mode 100644 index 00000000..158db31a Binary files /dev/null and b/analysis/plots/new_plots/x_value_choice_chosen_x_value_choice_chosen_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_value_choice_not_chosen_1_vs_behavior.png b/analysis/plots/new_plots/x_value_choice_not_chosen_1_vs_behavior.png new file mode 100644 index 00000000..8eaaff42 Binary files /dev/null and b/analysis/plots/new_plots/x_value_choice_not_chosen_1_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_value_choice_not_chosen_c_value_reward_vs_behavior.png b/analysis/plots/new_plots/x_value_choice_not_chosen_c_value_reward_vs_behavior.png new file mode 100644 index 00000000..aab0d982 Binary files /dev/null and b/analysis/plots/new_plots/x_value_choice_not_chosen_c_value_reward_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_value_choice_not_chosen_x_value_choice_not_chosen_vs_behavior.png b/analysis/plots/new_plots/x_value_choice_not_chosen_x_value_choice_not_chosen_vs_behavior.png new file mode 100644 index 00000000..06d25d5b Binary files /dev/null and b/analysis/plots/new_plots/x_value_choice_not_chosen_x_value_choice_not_chosen_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_value_reward_not_chosen_1_vs_behavior.png b/analysis/plots/new_plots/x_value_reward_not_chosen_1_vs_behavior.png new file mode 100644 index 00000000..39810dec Binary files /dev/null and b/analysis/plots/new_plots/x_value_reward_not_chosen_1_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_value_reward_not_chosen_c_value_choice_vs_behavior.png b/analysis/plots/new_plots/x_value_reward_not_chosen_c_value_choice_vs_behavior.png new file mode 100644 index 00000000..54ee4d2d Binary files /dev/null and b/analysis/plots/new_plots/x_value_reward_not_chosen_c_value_choice_vs_behavior.png differ diff --git a/analysis/plots/new_plots/x_value_reward_not_chosen_x_value_reward_not_chosen_vs_behavior.png b/analysis/plots/new_plots/x_value_reward_not_chosen_x_value_reward_not_chosen_vs_behavior.png new file mode 100644 index 00000000..20c71934 Binary files /dev/null and b/analysis/plots/new_plots/x_value_reward_not_chosen_x_value_reward_not_chosen_vs_behavior.png differ diff --git a/analysis/prepare_data_subjects_specific_analysis.py b/analysis/prepare_data_subjects_specific_analysis.py deleted file mode 100644 index 8a521ee0..00000000 --- a/analysis/prepare_data_subjects_specific_analysis.py +++ /dev/null @@ -1,485 +0,0 @@ -import sys -import os -import logging -import numpy as np -import torch -import pandas as pd - -sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) - -from resources.model_evaluation import bayesian_information_criterion, log_likelihood -from utils.plotting import plot_session -from resources.bandits import AgentQ, AgentNetwork, AgentSpice, get_update_dynamics -from resources.rnn import RLRNN -from resources.rnn_utils import DatasetRNN -from resources.rnn_training import fit_model -from resources.sindy_training import fit_spice as fit_model_sindy - -np.random.seed(42) -torch.manual_seed(42) - -n_actions = 2 - -logging.basicConfig( - level=logging.INFO, - format='%(asctime)s - %(levelname)s - %(message)s', - handlers=[ - logging.FileHandler("embedding_analysis.log"), - logging.StreamHandler() - ] -) -logger = logging.getLogger(__name__) - -data_path = 'data/parameter_recovery/data_16p_0.csv' -df = pd.read_csv(data_path) - -behavior_metrics = [] - -for pid in df['session'].unique(): - participant_df = df[df['session'] == pid] - if participant_df.empty: - continue - - choices = participant_df['choice'].values - n_switches = np.sum(np.abs(np.diff(choices))) - switch_rate = n_switches / (len(choices) - 1) if len(choices) > 1 else 0 - - stay_after_reward_count = 0 - stay_after_reward_total = 0 - for i in range(len(choices) - 1): - current_choice = choices[i] - next_choice = choices[i+1] - current_reward = participant_df['reward'].iloc[i] - if current_reward > 0: - stay_after_reward_total += 1 - if next_choice == current_choice: - stay_after_reward_count += 1 - stay_after_reward_rate = stay_after_reward_count / stay_after_reward_total if stay_after_reward_total > 0 else np.nan - - perseveration = np.mean(choices[:-1] == choices[1:]) if len(choices) > 1 else np.nan - avg_reward = participant_df['reward'].mean() - - behavior_metrics.append({ - 'participant_id': pid, - 'switch_rate': switch_rate, - 'stay_after_reward': stay_after_reward_rate, - 'perseveration': perseveration, - 'avg_reward': avg_reward - }) - -behavior_df = pd.DataFrame(behavior_metrics) -unique_participants = df['session'].unique() -n_participants = len(unique_participants) - -all_xs = [] -all_ys = [] - -participant_index_to_id = {} -participant_params = {} - -for i, participant_id in enumerate(unique_participants): - participant_df = df[df['session'] == participant_id] - n_trials = len(participant_df) - - alpha_reward = participant_df['alpha_reward'].iloc[0] - alpha_penalty = participant_df['alpha_penalty'].iloc[0] - beta_reward = participant_df['beta_reward'].iloc[0] - beta_choice = participant_df['beta_choice'].iloc[0] - forget_rate = participant_df['forget_rate'].iloc[0] - - participant_index_to_id[i] = participant_id - participant_params[participant_id] = { - 'alpha_reward': alpha_reward, - 'alpha_penalty': alpha_penalty, - 'beta_reward': beta_reward, - 'beta_choice': beta_choice, - 'forget_rate': forget_rate - } - - xs = torch.zeros((1, n_trials, 5)) - for t in range(1, n_trials): - prev_choice = participant_df['choice'].iloc[t - 1] - xs[0, t, int(prev_choice)] = 1.0 - if int(prev_choice) == 0: - xs[0, t, 2] = participant_df['reward'].iloc[t - 1] - xs[0, t, 3] = -1 - else: - xs[0, t, 2] = -1 - xs[0, t, 3] = participant_df['reward'].iloc[t - 1] - xs[0, :, 4] = i - - ys = torch.zeros((1, n_trials, n_actions)) - for t in range(n_trials): - choice = participant_df['choice'].iloc[t] - ys[0, t, int(choice)] = 1.0 - - all_xs.append(xs) - all_ys.append(ys) - -combined_xs = torch.cat(all_xs) -combined_ys = torch.cat(all_ys) -combined_dataset = DatasetRNN(combined_xs, combined_ys) - -list_rnn_modules = [ - 'x_learning_rate_reward', - 'x_value_reward_not_chosen', - 'x_value_choice_chosen', - 'x_value_choice_not_chosen' -] - -list_control_parameters = ['c_action', 'c_reward', 'c_value_reward', 'c_value_choice'] - -library_setup = { - 'x_learning_rate_reward': ['c_reward', 'c_value_reward', 'c_value_choice'], - 'x_value_reward_not_chosen': ['c_value_choice'], - 'x_value_choice_chosen': ['c_value_reward'], - 'x_value_choice_not_chosen': ['c_value_reward'], -} - -filter_setup = { - 'x_learning_rate_reward': ['c_action', 1, True], - 'x_value_reward_not_chosen': ['c_action', 0, True], - 'x_value_choice_chosen': ['c_action', 1, True], - 'x_value_choice_not_chosen': ['c_action', 0, True], -} - -embedding_size = 9 -model_rnn = RLRNN( - n_actions=n_actions, - n_participants=n_participants, - list_signals=list_rnn_modules + list_control_parameters, - hidden_size=22, - embedding_size=embedding_size, - dropout=0.319 -) - -optimizer_rnn = torch.optim.Adam(model_rnn.parameters(), lr=5e-3) -model_rnn, optimizer_rnn, final_train_loss = fit_model( - model=model_rnn, - optimizer=optimizer_rnn, - dataset_train=combined_dataset, - epochs=1, - n_steps=62, - scheduler=False, - convergence_threshold=0, - bagging=True -) - -agent_rnn = AgentNetwork(model_rnn=model_rnn, n_actions=n_actions) - -agent_sindy, _ = fit_model_sindy( - rnn_modules=list_rnn_modules, - control_signals=list_control_parameters, - agent=agent_rnn, - data=combined_dataset, - n_sessions_off_policy=1, - polynomial_degree=2, - library_setup=library_setup, - filter_setup=filter_setup, - optimizer_threshold=0.05, - optimizer_alpha=1, - verbose=True, -) - -# Mapping to support beta lookups in count_parameters -mapping_modules_values = { - 'x_value_choice_chosen': 'x_value_choice', - 'x_value_choice_not_chosen': 'x_value_choice', - 'x_learning_rate_reward': 'x_value_reward', - 'x_value_reward_not_chosen': 'x_value_reward', -} -sindy_params = agent_sindy.count_parameters(mapping_modules_values=mapping_modules_values) - -# Calculate BIC and log-likelihood values -available_participant_ids = set(range(n_participants)) - -bic_values = [] -ll_values = [] - -# Process each participant individually -for pid in sorted(available_participant_ids): - # Find indices of data belonging to this participant in the original dataset - indices = [] - for i in range(combined_dataset.xs.shape[0]): - # Use item() to get scalar value from tensor - if combined_dataset.xs[i, 0, -1].item() == pid: - indices.append(i) - - if not indices: - logger.warning(f"No data found for participant {pid}, skipping") - continue - - logger.info(f"Processing participant {pid}, found {len(indices)} data sequences") - - # Initialize data collectors for this participant - all_choices = [] - all_probs = [] - - # Process each sequence individually to maintain shape consistency - for idx in indices: - # Initialize the agent for this participant - agent_sindy.new_sess(participant_id=pid) - - # Get the original tensor directly from the dataset - # This ensures we use exactly the same tensor shape/format as during training - x_tensor = combined_dataset.xs[idx].clone() - - try: - # the original get_update_dynamics function from bandits.py - _, probs, _ = get_update_dynamics(x_tensor.cpu(), agent_sindy) - - # Extract choices for log-likelihood calculation - choices = x_tensor[..., :agent_sindy._n_actions].cpu().numpy() - - # Store results for this sequence - all_choices.append(choices) - all_probs.append(probs) - except Exception as e: - logger.error(f"Error processing sequence {idx} for participant {pid}: {str(e)}") - continue - - # Combine all sequences for this participant - if all_choices and all_probs: - combined_choices = np.vstack(all_choices) - combined_probs = np.vstack(all_probs) - - # Calculate log-likelihood and BIC - ll = log_likelihood(data=combined_choices, probs=combined_probs) - n_trials = combined_choices.shape[0] - normalized_ll = ll / n_trials if n_trials > 0 else 0 - ll_values.append(normalized_ll) - - bic = bayesian_information_criterion( - data=combined_choices, - probs=combined_probs, - n_parameters=sindy_params[pid], - ll=ll - ) - normalized_bic = bic / n_trials if n_trials > 0 else 0 - bic_values.append(normalized_bic) - else: - logger.warning(f"No valid data processed for participant {pid}") - # Add placeholder values to maintain participant order - ll_values.append(0) - bic_values.append(0) - -avg_bic = np.mean(bic_values) if bic_values else 0 -avg_ll = np.mean(ll_values) if ll_values else 0 - -sindy_modules = agent_sindy._model.submodules_sindy - -sindy_recovered_params = {} - -for pid in sorted(available_participant_ids): - original_pid = participant_index_to_id[pid] - - param_data = { - 'total_nonzero': 0, - 'parameters_by_module': {} - } - - # Go through each SINDy module - for module_name in list_rnn_modules: - # Get the SINDy model for this module and participant - sindy_model = sindy_modules[module_name][pid] - - coefs = sindy_model.model.steps[-1][1].coef_.flatten() - - feature_names = sindy_model.get_feature_names() - - # Find non-zero parameters - nonzero_indices = np.where(np.abs(coefs) > 1e-10)[0] - nonzero_count = len(nonzero_indices) - - # Store non-zero parameters and their values - nonzero_params = {} - for idx in nonzero_indices: - param_name = feature_names[idx] - param_value = coefs[idx] - nonzero_params[param_name] = param_value - - param_data['total_nonzero'] += nonzero_count - - param_data['parameters_by_module'][module_name] = { - 'nonzero_count': nonzero_count, - 'nonzero_params': nonzero_params - } - - sindy_recovered_params[original_pid] = param_data - -# Table of most common parameters and their frequencies -most_common_params = {module: {} for module in list_rnn_modules} -for pid, data in sindy_recovered_params.items(): - for module in list_rnn_modules: - for param_name in data['parameters_by_module'][module]['nonzero_params']: - if param_name not in most_common_params[module]: - most_common_params[module][param_name] = 0 - most_common_params[module][param_name] += 1 - -for module in list_rnn_modules: - if most_common_params[module]: - sorted_params = sorted(most_common_params[module].items(), key=lambda x: x[1], reverse=True) - logger.info(f"\nModule: {module}") - for param_name, count in sorted_params[:5]: - percentage = (count / n_participants) * 100 - logger.info(f" {param_name}: {count} participants ({percentage:.1f}%)") - -# Tables showing parameter values for each module across participants -# For each module, create a DataFrame with parameters as columns and participants as rows -for module_name in list_rnn_modules: - # Collect all unique parameters found for this module - all_params = set() - for pid_data in sindy_recovered_params.values(): - all_params.update(pid_data['parameters_by_module'][module_name]['nonzero_params'].keys()) - - # Sort parameters for consistent ordering (constants first) - all_params = sorted(list(all_params), key=lambda x: (0 if x == '1' else 1, x)) - - # One row per participant, one column per parameter - module_data = [] - for pid, pid_data in sindy_recovered_params.items(): - row = {'participant_id': pid} - param_dict = pid_data['parameters_by_module'][module_name]['nonzero_params'] - - # Fill in parameter values (or 0 if not present for this participant) - for param in all_params: - row[param] = param_dict.get(param, 0) - - module_data.append(row) - - df_module = pd.DataFrame(module_data) - csv_filename = f'sindy_{module_name}_parameters.csv' - df_module.to_csv(csv_filename, index=False) - - param_stats = { - 'mean': df_module[all_params].mean(), - 'std': df_module[all_params].std(), - 'min': df_module[all_params].min(), - 'max': df_module[all_params].max(), - 'present_in': df_module[all_params].astype(bool).sum() / len(df_module) * 100 # % of participants - } - - stats_filename = f'sindy_{module_name}_param_stats.csv' - pd.DataFrame(param_stats).to_csv(stats_filename) - -# Summary table showing parameter counts by module for all participants -summary_data = [] -for pid, pid_data in sindy_recovered_params.items(): - row = {'participant_id': pid} - for module_name in list_rnn_modules: - row[f'{module_name}_params'] = pid_data['parameters_by_module'][module_name]['nonzero_count'] - row['total_params'] = pid_data['total_nonzero'] - summary_data.append(row) - -df_summary = pd.DataFrame(summary_data) -summary_filename = 'sindy_parameter_summary.csv' -df_summary.to_csv(summary_filename, index=False) - -# Participant embeddings -participant_embeddings = {} -embedding_data = [] - -for i in range(n_participants): - pid_tensor = torch.tensor([i], device=agent_rnn._model.device) - embedding = agent_rnn._model.participant_embedding(pid_tensor).detach().cpu().numpy()[0] - - original_pid = participant_index_to_id[i] - participant_embeddings[original_pid] = embedding - embedding_data.append(embedding) - -embedding_data = np.array(embedding_data) - -participant_data = [] -for i, pid in enumerate(sorted(participant_params.keys())): - if i >= len(bic_values): - continue - - params = participant_params[pid] - embedding = participant_embeddings[pid] - - row = { - 'participant_id': pid, - 'bic': bic_values[i], - 'log_likelihood': ll_values[i], - } - - # Add embedding dimensions - for j in range(embedding_size): - row[f'embedding_{j}'] = embedding[j] - - # Add SINDy parameter counts - if pid in sindy_recovered_params: - row['sindy_param_count'] = sindy_recovered_params[pid]['total_nonzero'] - - # Add counts by module - for module_name in list_rnn_modules: - module_count = sindy_recovered_params[pid]['parameters_by_module'][module_name]['nonzero_count'] - row[f'params_{module_name}'] = module_count - - participant_data.append(row) - -df_analysis = pd.DataFrame(participant_data) -df_analysis.to_csv('embedding_analysis_results.csv', index=False) - -# Dataframe with participant parameters and their SINDy parameter counts -final_data = [] -for pid in sorted(participant_params.keys()): - if pid in sindy_recovered_params: - row = {'participant_id': pid} - - # Add original parameters - row.update(participant_params[pid]) - - # Add BIC and log-likelihood - i = list(sorted(participant_params.keys())).index(pid) - if i < len(bic_values): - row['bic'] = bic_values[i] - row['log_likelihood'] = ll_values[i] - - # Add parameter counts by module - for module_name in list_rnn_modules: - module_count = sindy_recovered_params[pid]['parameters_by_module'][module_name]['nonzero_count'] - row[f'params_{module_name}'] = module_count - - # Add specific parameter values - params = sindy_recovered_params[pid]['parameters_by_module'][module_name]['nonzero_params'] - for param_name, param_value in params.items(): - row[f'{module_name}_{param_name}'] = param_value - - row['total_params'] = sindy_recovered_params[pid]['total_nonzero'] - - # Add embeddings - if pid in participant_embeddings: - embedding = participant_embeddings[pid] - for j in range(embedding_size): - row[f'embedding_{j}'] = embedding[j] - - # Extract beta values from RNN (they are derived from embeddings) - pid_tensor = torch.tensor([list(participant_index_to_id.keys())[list(participant_index_to_id.values()).index(pid)]], - device=agent_rnn._model.device) - - # Get beta_reward from the model - beta_reward = agent_rnn._model.betas['x_value_reward']( - agent_rnn._model.participant_embedding(pid_tensor) - ).item() - - # Get beta_choice from the model - beta_choice = agent_rnn._model.betas['x_value_choice']( - agent_rnn._model.participant_embedding(pid_tensor) - ).item() - - # Add derived beta values to the results - row['derived_beta_reward'] = beta_reward - row['derived_beta_choice'] = beta_choice - - final_data.append(row) - -df_final = pd.DataFrame(final_data) -final_filename = 'sindy_parameter_analysis.csv' -df_final.to_csv(final_filename, index=False) - -df_final_behav = pd.merge(df_final, behavior_df, on='participant_id', how='left') -final_filename_behav = 'AAAA_sindy_params_behav_embeddings.csv' -df_final_behav.to_csv(final_filename_behav, index=False) - -logger.info("Analysis completed successfully!") \ No newline at end of file diff --git a/analysis/prticipants5 b/analysis/prticipants5 new file mode 100644 index 00000000..04915a63 --- /dev/null +++ b/analysis/prticipants5 @@ -0,0 +1,77 @@ +""" +For each SINDy coefficient column, plots its value vs. four behavioral metrics +(switch_rate, stay_after_reward, perseveration, avg_reward) in a 2×2 grid. +Points are color‐coded by participant age, and only participants ≤45 years old are included. +""" + +import pandas as pd +import matplotlib.pyplot as plt +from pathlib import Path +import numpy as np + +def main(): + file_path = Path('AAAAsindy_analysis_with_metrics.csv') + if not file_path.exists(): + raise FileNotFoundError(f"{file_path} not found—update `file_path` to your CSV location.") + df = pd.read_csv(file_path) + + age_col = 'slcn_age - years' + if age_col not in df.columns: + raise KeyError(f"Column '{age_col}' not found in data.") + df = df[df[age_col] <= 45].copy() + df['age'] = df[age_col] + + #just so the rest will be corelated with 4 behavs + exclude = [ + 'participant_id', age_col, + 'switch_rate', 'stay_after_reward', 'perseveration', 'avg_reward', + 'beta_reward', 'beta_choice', 'params_', 'total_params', + 'nll_', 'trial_likelihood_', 'bic_', 'aic_', + 'n_parameters_', 'metric_n_trials', 'embedding_', 'n_trials' + ] + coeffs = [c for c in df.columns if not any(c.startswith(pref) for pref in exclude)] + behavioral = ['switch_rate', 'stay_after_reward', 'perseveration', 'avg_reward'] + + # normalization for colorbar + ages = df['age'].values + norm = plt.Normalize(vmin=ages.min(), vmax=ages.max()) + cmap = 'viridis' + + output_dir = Path('/Users/martynaplomecka/closedloop_rl/analysis/plots/new_plots') + output_dir.mkdir(parents=True, exist_ok=True) + + + for coeff in coeffs: + vals = df[coeff].values + if np.allclose(vals, 0): + continue + + fig, axes = plt.subplots(2, 2, figsize=(14, 10)) + axes = axes.flatten() + + for ax, metric in zip(axes, behavioral): + scatter = ax.scatter(vals, df[metric], c=ages, cmap=cmap, norm=norm, alpha=0.8) + ax.set_xlabel(coeff) + ax.set_ylabel(metric.replace('_', ' ').title()) + ax.set_title(f"{metric.replace('_', ' ').title()} vs {coeff}") + + # = room for colorbar + plt.subplots_adjust(left=0.08, right=0.85, top=0.92, bottom=0.08, + wspace=0.3, hspace=0.3) + + sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) + sm.set_array([]) + + cbar_ax = fig.add_axes([0.87, 0.15, 0.02, 0.7]) # [left, bottom, width, height] + cbar = fig.colorbar(sm, cax=cbar_ax) + cbar.set_label('Age', rotation=270, labelpad=15) + + fig.suptitle(f"{coeff} Coefficient vs Behavioral Metrics", fontsize=16) + + out_path = output_dir / f"{coeff}_vs_behavior.png" + fig.savefig(out_path, dpi=300, bbox_inches='tight') + plt.close(fig) + print(f"Saved {out_path}") + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/behavior_metrics_with_filter_status.csv b/behavior_metrics_with_filter_status.csv new file mode 100644 index 00000000..a67c731b --- /dev/null +++ b/behavior_metrics_with_filter_status.csv @@ -0,0 +1,307 @@ +participant_id,switch_rate,stay_after_reward,perseveration,avg_reward,n_trials,slcn_age - years,filtered_out +11.0,0.34,0.9811320754716981,0.66,0.5346534653465347,101,10.28884326,False +360.0,0.35384615384615387,0.9428571428571428,0.6461538461538462,0.5419847328244275,131,26.56005753,False +301.0,0.1937984496124031,1.0,0.8062015503875969,0.5615384615384615,130,25.0,False +73.0,0.09230769230769231,0.9885057471264368,0.9076923076923077,0.6717557251908397,131,12.67351129,False +202.0,0.11538461538461539,1.0,0.8846153846153846,0.6106870229007634,131,17.3963039,False +214.0,0.5153846153846153,0.7162162162162162,0.4846153846153846,0.5725190839694656,131,11.87953457,False +441.0,0.24615384615384617,0.9866666666666667,0.7538461538461538,0.5725190839694656,131,18.75,True +425.0,0.4140625,0.8103448275862069,0.5859375,0.4573643410852713,129,31.0,False +311.0,0.14615384615384616,1.0,0.8538461538461538,0.5954198473282443,131,25.0,False +142.0,0.07692307692307693,1.0,0.9230769230769231,0.648854961832061,131,12.50376454,False +213.0,0.5461538461538461,0.7076923076923077,0.45384615384615384,0.4961832061068702,131,11.87953457,False +42.0,0.23846153846153847,0.92,0.7615384615384615,0.5725190839694656,131,12.83778234,False +205.0,0.3,0.9135802469135802,0.7,0.6183206106870229,131,17.01574264,False +427.0,0.4307692307692308,1.0,0.5692307692307692,0.5343511450381679,131,20.41666667,False +159.0,0.4418604651162791,0.7971014492753623,0.5581395348837209,0.5307692307692308,130,13.38809035,False +76.0,0.4,0.8985507246376812,0.6,0.5267175572519084,131,8.238193018,False +442.0,0.5769230769230769,0.7910447761194029,0.4230769230769231,0.5114503816793893,131,21.5,False +78.0,0.4153846153846154,0.8070175438596491,0.5846153846153846,0.44274809160305345,131,10.72142368,False +170.0,0.07692307692307693,1.0,0.9230769230769231,0.6412213740458015,131,13.54140999,False +220.0,0.27692307692307694,0.9864864864864865,0.7230769230769231,0.5725190839694656,131,16.47364819,False +67.0,0.08461538461538462,1.0,0.9153846153846154,0.5419847328244275,131,8.826830938,True +426.0,0.33076923076923076,0.9863013698630136,0.6692307692307692,0.5572519083969466,131,20.08333333,False +43.0,0.45384615384615384,0.9411764705882353,0.5461538461538461,0.5190839694656488,131,11.95619439,False +349.0,0.4076923076923077,1.0,0.5923076923076923,0.5343511450381679,131,26.0,False +449.0,0.2923076923076923,0.9864864864864865,0.7076923076923077,0.5648854961832062,131,18.75,True +320.0,0.17692307692307693,0.9594594594594594,0.823076923076923,0.5725190839694656,131,26.0,False +189.0,0.46923076923076923,0.7936507936507936,0.5307692307692308,0.48091603053435117,131,16.30663929,False +18.0,0.15483870967741936,0.978494623655914,0.8451612903225807,0.6025641025641025,156,12.63791923,False +173.0,0.2923076923076923,1.0,0.7076923076923077,0.6412213740458015,131,15.52635181,False +457.0,0.16923076923076924,1.0,0.8307692307692308,0.648854961832061,131,18.41666667,False +56.0,0.10852713178294573,0.9873417721518988,0.8914728682170543,0.6153846153846154,130,11.15947981,False +124.0,0.6846153846153846,0.40350877192982454,0.3153846153846154,0.44274809160305345,131,13.00205339,True +206.0,0.6230769230769231,0.696969696969697,0.3769230769230769,0.5114503816793893,131,8.227241615,False +455.0,0.16923076923076924,1.0,0.8307692307692308,0.549618320610687,131,20.25,False +77.0,0.35384615384615387,0.8875,0.6461538461538462,0.6183206106870229,131,11.83572895,True +405.0,0.2692307692307692,0.9629629629629629,0.7307692307692307,0.6183206106870229,131,,False +127.0,0.3769230769230769,0.9629629629629629,0.6230769230769231,0.6183206106870229,131,12.91991786,False +419.0,0.16153846153846155,1.0,0.8384615384615385,0.5801526717557252,131,18.0,False +125.0,0.1076923076923077,0.9866666666666667,0.8923076923076924,0.5725190839694656,131,14.04517454,False +429.0,0.35384615384615387,0.9393939393939394,0.6461538461538462,0.5038167938931297,131,19.0,False +421.0,0.2153846153846154,0.9868421052631579,0.7846153846153846,0.5801526717557252,131,20.5,False +310.0,0.2,1.0,0.8,0.6030534351145038,131,30.0,False +176.0,0.3333333333333333,0.9878048780487805,0.6666666666666666,0.6384615384615384,130,16.82409309,False +98.0,0.26153846153846155,0.9701492537313433,0.7384615384615385,0.5190839694656488,131,13.83709788,False +25.0,0.16923076923076924,1.0,0.8307692307692308,0.5877862595419847,131,13.86995209,False +208.0,0.3046875,0.9878048780487805,0.6953125,0.6434108527131783,129,15.54004107,False +112.0,0.3333333333333333,0.9285714285714286,0.6666666666666666,0.5461538461538461,130,9.149897331,False +52.0,0.375,0.9565217391304348,0.625,0.5348837209302325,129,8.145106092,False +407.0,0.2153846153846154,0.9529411764705882,0.7846153846153846,0.648854961832061,131,,True +149.0,0.43548387096774194,0.6785714285714286,0.5645161290322581,0.448,125,11.23613963,False +109.0,0.2846153846153846,0.9259259259259259,0.7153846153846154,0.6259541984732825,131,9.952087611,False +412.0,0.26153846153846155,1.0,0.7384615384615385,0.5801526717557252,131,20.25,False +75.0,0.15503875968992248,1.0,0.8449612403100775,0.6,130,8.824093087,False +165.0,0.13846153846153847,0.9882352941176471,0.8615384615384616,0.648854961832061,131,14.6036961,False +221.0,0.3515625,0.9558823529411765,0.6484375,0.5271317829457365,129,7.770020534,False +325.0,0.17692307692307693,1.0,0.823076923076923,0.5725190839694656,131,25.0,False +316.0,0.19230769230769232,1.0,0.8076923076923077,0.6259541984732825,131,25.0,True +151.0,0.4496124031007752,0.8714285714285714,0.5503875968992248,0.5461538461538461,130,12.64339493,False +418.0,0.4959349593495935,0.7368421052631579,0.5040650406504065,0.46774193548387094,124,26.0,False +35.0,0.3153846153846154,0.9545454545454546,0.6846153846153846,0.5114503816793893,131,9.199178645,True +450.0,0.2846153846153846,0.9152542372881356,0.7153846153846154,0.45038167938931295,131,21.83333333,True +403.0,0.2692307692307692,1.0,0.7307692307692307,0.6030534351145038,131,,False +175.0,0.23076923076923078,0.9726027397260274,0.7692307692307693,0.5572519083969466,131,16.82409309,False +92.0,0.31007751937984496,0.8831168831168831,0.689922480620155,0.6,130,14.1026694,False +32.0,0.23870967741935484,1.0,0.7612903225806451,0.5641025641025641,156,11.321013,False +411.0,0.2076923076923077,1.0,0.7923076923076923,0.5648854961832062,131,19.33333333,True +87.0,0.1875,0.975609756097561,0.8125,0.6434108527131783,129,12.13963039,False +148.0,0.16153846153846155,0.9642857142857143,0.8384615384615385,0.648854961832061,131,13.49486653,False +117.0,0.45384615384615384,0.859375,0.5461538461538461,0.4961832061068702,131,8.689938398,False +204.0,0.15384615384615385,1.0,0.8461538461538461,0.5877862595419847,131,17.54414784,False +406.0,0.26153846153846155,0.9761904761904762,0.7384615384615385,0.6412213740458015,131,,False +353.0,0.33076923076923076,0.9848484848484849,0.6692307692307692,0.5038167938931297,131,28.0,False +447.0,0.19230769230769232,0.9733333333333334,0.8076923076923077,0.5801526717557252,131,18.91666667,False +150.0,0.4076923076923077,0.8529411764705882,0.5923076923076923,0.5267175572519084,131,11.88774812,False +88.0,0.453781512605042,0.7878787878787878,0.5462184873949579,0.55,120,8.83504449,True +84.0,0.421875,0.9230769230769231,0.578125,0.5116279069767442,129,10.24229979,False +74.0,0.16923076923076924,0.9887640449438202,0.8307692307692308,0.6793893129770993,131,10.53524983,False +428.0,0.2923076923076923,0.9402985074626866,0.7076923076923077,0.5190839694656488,131,20.91666667,False +161.0,0.13846153846153847,1.0,0.8615384615384616,0.5954198473282443,131,17.81245722,False +303.0,0.27692307692307694,1.0,0.7230769230769231,0.5648854961832062,131,30.0,False +424.0,0.2846153846153846,0.9538461538461539,0.7153846153846154,0.5038167938931297,131,20.5,False +53.0,0.4186046511627907,0.8840579710144928,0.5813953488372093,0.5307692307692308,130,10.05065024,False +420.0,0.46923076923076923,0.8852459016393442,0.5307692307692308,0.4732824427480916,131,18.91666667,False +93.0,0.23255813953488372,0.9264705882352942,0.7674418604651163,0.5230769230769231,130,9.612594114,True +347.0,0.23076923076923078,0.9868421052631579,0.7692307692307693,0.5801526717557252,131,27.0,False +466.0,0.2,1.0,0.8,0.6106870229007634,131,20.08333333,True +68.0,0.38461538461538464,0.8636363636363636,0.6153846153846154,0.5038167938931297,131,8.443531828,False +345.0,0.2076923076923077,0.9710144927536232,0.7923076923076923,0.5343511450381679,131,29.0,False +57.0,0.46511627906976744,0.8103448275862069,0.5348837209302325,0.45384615384615384,130,10.80355921,False +172.0,0.2076923076923077,1.0,0.7923076923076923,0.6030534351145038,131,14.57357974,False +133.0,0.3671875,0.78125,0.6328125,0.5038759689922481,129,10.23682409,False +155.0,0.5538461538461539,0.6129032258064516,0.4461538461538462,0.4732824427480916,131,12.85147159,False +309.0,0.34615384615384615,0.958904109589041,0.6538461538461539,0.5572519083969466,131,27.0,False +362.0,0.35384615384615387,0.9866666666666667,0.6461538461538462,0.5725190839694656,131,26.53715263,True +219.0,0.5658914728682171,0.6,0.43410852713178294,0.46153846153846156,130,15.50444901,False +359.0,0.46153846153846156,0.9154929577464789,0.5384615384615384,0.549618320610687,131,26.57150999,False +135.0,0.1,1.0,0.9,0.5877862595419847,131,15.81930185,False +431.0,0.16153846153846155,1.0,0.8384615384615385,0.6106870229007634,131,19.0,False +145.0,0.2923076923076923,0.9512195121951219,0.7076923076923077,0.6259541984732825,131,12.47638604,False +158.0,0.2923076923076923,0.8765432098765432,0.7076923076923077,0.6259541984732825,131,12.12867899,False +13.0,0.375,0.810126582278481,0.625,0.5517241379310345,145,9.618069815,False +416.0,0.2076923076923077,0.9866666666666667,0.7923076923076923,0.5801526717557252,131,20.0,False +439.0,0.13846153846153847,1.0,0.8615384615384616,0.6030534351145038,131,20.0,False +69.0,0.2923076923076923,0.925,0.7076923076923077,0.6106870229007634,131,11.72895277,False +82.0,0.26153846153846155,0.9855072463768116,0.7384615384615385,0.5267175572519084,131,14.69130732,False +168.0,0.2846153846153846,1.0,0.7153846153846154,0.6564885496183206,131,16.64339493,False +423.0,0.43846153846153846,0.9384615384615385,0.5615384615384615,0.4961832061068702,131,20.91666667,False +45.0,0.23846153846153847,0.56,0.7615384615384615,0.19083969465648856,131,9.752224504,False +331.0,0.5923076923076923,0.5789473684210527,0.4076923076923077,0.44274809160305345,131,25.0,False +445.0,0.23076923076923078,0.987012987012987,0.7692307692307693,0.5954198473282443,131,21.75,True +131.0,0.4307692307692308,0.7857142857142857,0.5692307692307692,0.5343511450381679,131,15.20876112,False +456.0,0.13846153846153847,1.0,0.8615384615384616,0.5877862595419847,131,21.16666667,False +337.0,0.3046875,0.9538461538461539,0.6953125,0.5116279069767442,129,29.0,False +129.0,0.4230769230769231,0.918918918918919,0.5769230769230769,0.5648854961832062,131,12.62970568,False +146.0,0.46153846153846156,0.8307692307692308,0.5384615384615384,0.4961832061068702,131,12.27378508,False +354.0,0.4076923076923077,0.9722222222222222,0.5923076923076923,0.549618320610687,131,26.59441489,True +469.0,0.23076923076923078,0.9444444444444444,0.7692307692307693,0.5572519083969466,131,19.0,False +49.0,0.1076923076923077,0.987012987012987,0.8923076923076924,0.5954198473282443,131,11.78097194,False +115.0,0.3333333333333333,0.9701492537313433,0.6666666666666666,0.5153846153846153,130,8.813141684,False +55.0,0.33076923076923076,0.9135802469135802,0.6692307692307692,0.6259541984732825,131,13.28678987,False +193.0,0.2923076923076923,0.9420289855072463,0.7076923076923077,0.5267175572519084,131,14.55715264,False +444.0,0.4076923076923077,0.9142857142857143,0.5923076923076923,0.5419847328244275,131,20.08333333,False +308.0,0.35384615384615387,0.9104477611940298,0.6461538461538462,0.5190839694656488,131,27.0,False +210.0,0.17692307692307693,1.0,0.823076923076923,0.6259541984732825,131,17.39356605,False +190.0,0.17692307692307693,0.9883720930232558,0.823076923076923,0.6641221374045801,131,16.85147159,False +70.0,0.43846153846153846,0.8356164383561644,0.5615384615384615,0.5648854961832062,131,14.65845311,False +128.0,0.2076923076923077,0.975,0.7923076923076923,0.6183206106870229,131,14.39835729,False +194.0,0.26153846153846155,0.9166666666666666,0.7384615384615385,0.648854961832061,131,14.22313484,False +410.0,0.3076923076923077,0.8333333333333334,0.6923076923076923,0.5572519083969466,131,23.91666667,False +458.0,0.1,1.0,0.9,0.6106870229007634,131,19.41666667,False +19.0,0.18064516129032257,0.9883720930232558,0.8193548387096774,0.5576923076923077,156,12.63791923,False +163.0,0.3,0.9,0.7,0.6183206106870229,131,13.11156742,False +40.0,0.23846153846153847,0.971830985915493,0.7615384615384615,0.549618320610687,131,13.2347707,True +365.0,0.4230769230769231,0.8787878787878788,0.5769230769230769,0.5114503816793893,131,26.50279527,False +195.0,0.3,0.971830985915493,0.7,0.549618320610687,131,15.82477755,False +119.0,0.46153846153846156,0.8472222222222222,0.5384615384615384,0.549618320610687,131,8.150581793,True +453.0,0.43846153846153846,0.7333333333333333,0.5615384615384615,0.4580152671755725,131,18.0,False +83.0,0.4846153846153846,0.890625,0.5153846153846153,0.4961832061068702,131,12.38603696,False +24.0,0.43846153846153846,0.6851851851851852,0.5615384615384615,0.4198473282442748,131,10.50787132,False +364.0,0.27692307692307694,0.9242424242424242,0.7230769230769231,0.5114503816793893,131,26.51424772,False +17.0,0.4935064935064935,0.8,0.5064935064935064,0.4838709677419355,155,8.657084189,False +209.0,0.1076923076923077,1.0,0.8923076923076924,0.6183206106870229,131,14.29158111,False +323.0,0.38461538461538464,1.0,0.6153846153846154,0.5572519083969466,131,25.0,False +436.0,0.2923076923076923,0.9863013698630136,0.7076923076923077,0.5648854961832062,131,22.16666667,True +467.0,0.4230769230769231,0.9848484848484849,0.5769230769230769,0.5038167938931297,131,18.75,False +185.0,0.27692307692307694,0.9647058823529412,0.7230769230769231,0.6564885496183206,131,14.40109514,False +85.0,0.13846153846153847,0.9733333333333334,0.8615384615384616,0.5801526717557252,131,10.80903491,False +38.0,0.2923076923076923,0.9583333333333334,0.7076923076923077,0.5572519083969466,131,13.13894593,False +28.0,0.5116279069767442,0.6290322580645161,0.4883720930232558,0.47692307692307695,130,11.04722793,False +120.0,0.27692307692307694,0.9411764705882353,0.7230769230769231,0.5267175572519084,131,8.481861739,False +422.0,0.19230769230769232,0.9868421052631579,0.8076923076923077,0.5877862595419847,131,20.0,False +30.0,0.12307692307692308,1.0,0.8769230769230769,0.6183206106870229,131,14.7652293,False +126.0,0.4846153846153846,0.7794117647058824,0.5153846153846153,0.5267175572519084,131,10.35181383,False +413.0,0.36923076923076925,0.918918918918919,0.6307692307692307,0.5648854961832062,131,18.0,False +104.0,0.23846153846153847,0.8902439024390244,0.7615384615384615,0.6259541984732825,131,13.94934976,False +81.0,0.16923076923076924,0.9864864864864865,0.8307692307692308,0.5648854961832062,131,14.64476386,False +451.0,0.16923076923076924,1.0,0.8307692307692308,0.5877862595419847,131,22.58333333,False +414.0,0.13846153846153847,0.9876543209876543,0.8615384615384616,0.6259541984732825,131,,False +12.0,0.35,0.9487179487179487,0.65,0.5602836879432624,141,7.96440794,False +343.0,0.1076923076923077,1.0,0.8923076923076924,0.6030534351145038,131,25.0,False +188.0,0.26356589147286824,0.9358974358974359,0.7364341085271318,0.6076923076923076,130,14.70225873,False +352.0,0.2846153846153846,0.9864864864864865,0.7153846153846154,0.5725190839694656,131,26.0,False +443.0,0.3,0.9857142857142858,0.7,0.5419847328244275,131,18.91666667,False +314.0,0.2923076923076923,0.9,0.7076923076923077,0.5419847328244275,131,25.0,False +459.0,0.24615384615384617,0.9384615384615385,0.7538461538461538,0.5038167938931297,131,18.25,False +132.0,0.3923076923076923,0.9701492537313433,0.6076923076923076,0.5190839694656488,131,14.9705681,False +434.0,0.2153846153846154,1.0,0.7846153846153846,0.5190839694656488,131,23.0,False +330.0,0.09230769230769231,1.0,0.9076923076923077,0.6335877862595419,131,25.0,False +321.0,0.36153846153846153,0.9722222222222222,0.6384615384615384,0.549618320610687,131,26.0,False +134.0,0.3230769230769231,0.9375,0.676923076923077,0.4961832061068702,131,12.92265572,False +157.0,0.23846153846153847,0.9885057471264368,0.7615384615384615,0.6717557251908397,131,12.83778234,False +100.0,0.27692307692307694,0.9848484848484849,0.7230769230769231,0.5114503816793893,131,10.39288159,False +72.0,0.4,0.9324324324324325,0.6,0.5725190839694656,131,10.07802875,False +438.0,0.2846153846153846,0.9692307692307692,0.7153846153846154,0.4961832061068702,131,21.08333333,False +46.0,0.6046511627906976,0.5846153846153846,0.3953488372093023,0.5,130,13.26488706,False +218.0,0.1076923076923077,1.0,0.8923076923076924,0.6030534351145038,131,13.99863107,False +440.0,0.12307692307692308,1.0,0.8769230769230769,0.6183206106870229,131,21.0,False +351.0,0.08461538461538462,1.0,0.9153846153846154,0.5954198473282443,131,26.0,False +312.0,0.2153846153846154,0.9864864864864865,0.7846153846153846,0.5725190839694656,131,27.0,False +448.0,0.33076923076923076,0.8360655737704918,0.6692307692307692,0.46564885496183206,131,28.0,False +160.0,0.25384615384615383,0.9529411764705882,0.7461538461538462,0.6564885496183206,131,13.7522245,False +306.0,0.3671875,0.9859154929577465,0.6328125,0.5581395348837209,129,28.0,False +94.0,0.3,0.961038961038961,0.7,0.5877862595419847,131,12.84599589,False +141.0,0.13076923076923078,1.0,0.8692307692307693,0.648854961832061,131,11.48528405,False +26.0,0.32558139534883723,0.9142857142857143,0.6744186046511628,0.5461538461538461,130,8.027378508,False +433.0,0.23846153846153847,0.9859154929577465,0.7615384615384615,0.5419847328244275,131,50.0,False +338.0,0.2923076923076923,0.9054054054054054,0.7076923076923077,0.5648854961832062,131,25.0,False +59.0,0.5230769230769231,0.7777777777777778,0.47692307692307695,0.48091603053435117,131,9.505817933,False +147.0,0.4076923076923077,0.7941176470588235,0.5923076923076923,0.5267175572519084,131,10.86379192,False +106.0,0.12307692307692308,0.975609756097561,0.8769230769230769,0.6259541984732825,131,13.46475017,False +139.0,0.35384615384615387,0.9113924050632911,0.6461538461538462,0.6106870229007634,131,13.25667351,False +138.0,0.3153846153846154,0.9642857142857143,0.6846153846153846,0.6412213740458015,131,10.62286105,False +437.0,0.11538461538461539,1.0,0.8846153846153846,0.6106870229007634,131,25.0,True +463.0,0.2923076923076923,1.0,0.7076923076923077,0.5572519083969466,131,20.58333333,False +116.0,0.4076923076923077,0.8666666666666667,0.5923076923076923,0.46564885496183206,131,10.2696783,False +184.0,0.24615384615384617,1.0,0.7538461538461538,0.5801526717557252,131,16.63518138,True +197.0,0.36923076923076925,0.9384615384615385,0.6307692307692307,0.5038167938931297,131,9.281314168,False +152.0,0.16153846153846155,0.9875,0.8384615384615385,0.6183206106870229,131,13.2073922,False +144.0,0.4230769230769231,0.9523809523809523,0.5769230769230769,0.48854961832061067,131,12.47912389,False +361.0,0.3230769230769231,1.0,0.676923076923077,0.5572519083969466,131,26.54860508,False +196.0,0.4496124031007752,0.7761194029850746,0.5503875968992248,0.5230769230769231,130,16.23271732,False +212.0,0.3230769230769231,1.0,0.676923076923077,0.5572519083969466,131,14.71321013,False +123.0,0.17692307692307693,1.0,0.823076923076923,0.6412213740458015,131,14.91854894,False +162.0,0.14615384615384616,0.9864864864864865,0.8538461538461538,0.5648854961832062,131,16.19438741,False +110.0,0.36923076923076925,0.9324324324324325,0.6307692307692307,0.5648854961832062,131,11.25256674,False +415.0,0.4,0.8,0.6,0.4580152671755725,131,19.0,False +300.0,0.08461538461538462,1.0,0.9153846153846154,0.6030534351145038,131,30.0,False +318.0,0.3046875,0.9130434782608695,0.6953125,0.5426356589147286,129,27.0,False +446.0,0.4153846153846154,0.7619047619047619,0.5846153846153846,0.48091603053435117,131,21.91666667,False +136.0,0.17692307692307693,0.9529411764705882,0.823076923076923,0.648854961832061,131,13.56605065,False +348.0,0.19230769230769232,1.0,0.8076923076923077,0.6106870229007634,131,27.0,False +111.0,0.23076923076923078,1.0,0.7692307692307693,0.549618320610687,131,17.7357974,False +319.0,0.29457364341085274,0.9692307692307692,0.7054263565891473,0.5076923076923077,130,25.0,False +315.0,0.2153846153846154,0.9861111111111112,0.7846153846153846,0.5572519083969466,131,25.0,False +452.0,0.27692307692307694,0.8970588235294118,0.7230769230769231,0.5267175572519084,131,18.0,False +363.0,0.3,0.9230769230769231,0.7,0.5038167938931297,131,26.52570017,False +435.0,0.2846153846153846,0.9375,0.7153846153846154,0.48854961832061067,131,21.33333333,False +326.0,0.19230769230769232,0.9857142857142858,0.8076923076923077,0.5419847328244275,131,27.0,False +179.0,0.33076923076923076,1.0,0.6692307692307692,0.5038167938931297,131,9.782340862,False +137.0,0.13953488372093023,1.0,0.8604651162790697,0.6,130,16.183436,False +191.0,0.5,0.7868852459016393,0.5,0.46564885496183206,131,14.55167693,False +305.0,0.12307692307692308,0.9864864864864865,0.8769230769230769,0.5648854961832062,131,28.0,False +402.0,0.24615384615384617,0.9404761904761905,0.7538461538461538,0.6412213740458015,131,,False +80.0,0.4076923076923077,0.7101449275362319,0.5923076923076923,0.5267175572519084,131,16.66803559,False +181.0,0.36923076923076925,0.8875,0.6307692307692307,0.6183206106870229,131,12.99110198,False +207.0,0.25384615384615383,1.0,0.7461538461538462,0.5877862595419847,131,8.325804244,False +342.0,0.46923076923076923,0.8970588235294118,0.5307692307692308,0.5267175572519084,131,26.0,False +430.0,0.4,0.9117647058823529,0.6,0.5267175572519084,131,20.33333333,False +71.0,0.25384615384615383,0.9436619718309859,0.7461538461538462,0.5419847328244275,131,17.19917864,False +174.0,0.19230769230769232,0.96,0.8076923076923077,0.5801526717557252,131,16.78028747,False +468.0,0.21705426356589147,1.0,0.7829457364341085,0.5538461538461539,130,21.83333333,False +169.0,0.12307692307692308,1.0,0.8769230769230769,0.6030534351145038,131,16.21355236,False +36.0,0.09230769230769231,1.0,0.9076923076923077,0.5801526717557252,131,15.18138261,False +140.0,0.36923076923076925,0.9295774647887324,0.6307692307692307,0.549618320610687,131,10.85284052,False +461.0,0.24615384615384617,0.9571428571428572,0.7538461538461538,0.5419847328244275,131,20.66666667,False +215.0,0.19230769230769232,1.0,0.8076923076923077,0.5648854961832062,131,14.86379192,False +322.0,0.5307692307692308,0.8059701492537313,0.46923076923076923,0.5114503816793893,131,25.0,False +37.0,0.13846153846153847,1.0,0.8615384615384616,0.648854961832061,131,17.27583847,False +182.0,0.12307692307692308,0.9883720930232558,0.8769230769230769,0.6641221374045801,131,15.08008214,False +328.0,0.23076923076923078,0.90625,0.7692307692307693,0.4961832061068702,131,25.0,False +201.0,0.18461538461538463,0.9868421052631579,0.8153846153846154,0.5877862595419847,131,14.15468857,False +65.0,0.4444444444444444,0.9264705882352942,0.5555555555555556,0.5433070866141733,127,7.89596167,False +350.0,0.49606299212598426,0.8787878787878788,0.5039370078740157,0.5234375,128,29.0,False +108.0,0.5116279069767442,0.84375,0.4883720930232558,0.49230769230769234,130,9.253935661,False +114.0,0.27692307692307694,0.9577464788732394,0.7230769230769231,0.549618320610687,131,15.74811773,False +31.0,0.5225806451612903,0.8214285714285714,0.4774193548387097,0.5448717948717948,156,9.232032854,False +60.0,0.17692307692307693,1.0,0.823076923076923,0.5801526717557252,131,15.15126626,True +304.0,0.09302325581395349,1.0,0.9069767441860465,0.6076923076923076,130,27.0,False +99.0,0.13846153846153847,0.9871794871794872,0.8615384615384616,0.6030534351145038,131,13.27583847,True +130.0,0.2230769230769231,0.987012987012987,0.7769230769230769,0.5877862595419847,131,17.49486653,False +102.0,0.3225806451612903,0.7551020408163265,0.6774193548387096,0.392,125,8.687200548,False +118.0,0.3230769230769231,0.9767441860465116,0.676923076923077,0.6564885496183206,131,9.401779603,False +41.0,0.16923076923076924,0.9605263157894737,0.8307692307692308,0.5877862595419847,131,11.47433265,True +329.0,0.3076923076923077,0.9705882352941176,0.6923076923076923,0.5267175572519084,131,30.0,False +334.0,0.47692307692307695,0.7619047619047619,0.5230769230769231,0.48854961832061067,131,27.0,False +302.0,0.3769230769230769,0.9420289855072463,0.6230769230769231,0.5267175572519084,131,27.0,False +454.0,0.13076923076923078,1.0,0.8692307692307693,0.5877862595419847,131,21.41666667,False +357.0,0.18461538461538463,1.0,0.8153846153846154,0.5648854961832062,131,26.58296244,False +417.0,0.1076923076923077,1.0,0.8923076923076924,0.6106870229007634,131,19.0,False +96.0,0.3643410852713178,0.9342105263157895,0.6356589147286822,0.5923076923076923,130,14.88021903,False +27.0,0.3,0.9615384615384616,0.7,0.6030534351145038,131,9.801505818,False +20.0,0.15483870967741936,0.989247311827957,0.8451612903225807,0.6025641025641025,156,14.54346338,False +335.0,0.16923076923076924,1.0,0.8307692307692308,0.549618320610687,131,25.0,False +101.0,0.3828125,0.8,0.6171875,0.3488372093023256,129,8.306639288,False +113.0,0.38461538461538464,0.9295774647887324,0.6153846153846154,0.5419847328244275,131,15.74811773,False +199.0,0.15384615384615385,0.9857142857142858,0.8461538461538461,0.5419847328244275,131,17.99589322,True +464.0,0.38461538461538464,0.9861111111111112,0.6153846153846154,0.5572519083969466,131,18.75,False +121.0,0.47692307692307695,0.7704918032786885,0.5230769230769231,0.4732824427480916,131,9.013004791,False +103.0,0.24615384615384617,0.9876543209876543,0.7538461538461538,0.6259541984732825,131,10.38466804,False +317.0,0.36153846153846153,0.9444444444444444,0.6384615384615384,0.5572519083969466,131,28.0,False +153.0,0.18461538461538463,0.9761904761904762,0.8153846153846154,0.648854961832061,131,12.67351129,False +177.0,0.2230769230769231,1.0,0.7769230769230769,0.5725190839694656,131,13.60438056,False +156.0,0.3178294573643411,0.9066666666666666,0.6821705426356589,0.5846153846153846,130,12.83778234,False +90.0,0.3923076923076923,0.84,0.6076923076923076,0.5801526717557252,131,11.09924709,False +44.0,0.36923076923076925,1.0,0.6307692307692307,0.5419847328244275,131,16.14236824,False +48.0,0.5076923076923077,0.8507462686567164,0.49230769230769234,0.5190839694656488,131,10.03696099,False +122.0,0.2692307692307692,0.972972972972973,0.7307692307692307,0.5725190839694656,131,10.98425736,False +15.0,0.461038961038961,0.9523809523809523,0.538961038961039,0.5483870967741935,155,9.590691307,False +164.0,0.17692307692307693,0.987012987012987,0.823076923076923,0.5877862595419847,131,14.11362081,True +63.0,0.45384615384615384,0.8307692307692308,0.5461538461538461,0.4961832061068702,131,10.44490075,False +460.0,0.4153846153846154,0.9855072463768116,0.5846153846153846,0.5267175572519084,131,21.0,False +339.0,0.06976744186046512,1.0,0.9302325581395349,0.6,130,28.0,True +16.0,0.5612903225806452,0.8375,0.43870967741935485,0.5192307692307693,156,8.862422998,False +200.0,0.2923076923076923,0.9879518072289156,0.7076923076923077,0.6412213740458015,131,11.77275838,False +105.0,0.09230769230769231,0.9871794871794872,0.9076923076923077,0.5954198473282443,131,13.94934976,True +183.0,0.35384615384615387,0.8513513513513513,0.6461538461538462,0.5648854961832062,131,12.07392197,False +23.0,0.38461538461538464,0.9142857142857143,0.6153846153846154,0.5343511450381679,131,11.20602327,False +432.0,0.11538461538461539,1.0,0.8846153846153846,0.6259541984732825,131,21.08333333,False +33.0,0.34838709677419355,0.9195402298850575,0.6516129032258065,0.5576923076923077,156,12.80219028,False +178.0,0.2923076923076923,0.9736842105263158,0.7076923076923077,0.5877862595419847,131,15.70704997,False +171.0,0.3384615384615385,0.9,0.6615384615384615,0.5419847328244275,131,16.57768652,False +167.0,0.16153846153846155,1.0,0.8384615384615385,0.6564885496183206,131,14.32717317,False +22.0,0.2903225806451613,0.8928571428571429,0.7096774193548387,0.5448717948717948,156,16.49007529,False +143.0,0.26356589147286824,0.9545454545454546,0.7364341085271318,0.5153846153846153,130,11.35112936,False +465.0,0.18461538461538463,1.0,0.8153846153846154,0.5801526717557252,131,22.33333333,False +409.0,0.24615384615384617,1.0,0.7538461538461538,0.5801526717557252,131,18.0,False +313.0,0.3076923076923077,1.0,0.6923076923076923,0.5801526717557252,131,29.0,False +198.0,0.2,0.975,0.8,0.6106870229007634,131,13.85626283,False +332.0,0.17692307692307693,0.9873417721518988,0.823076923076923,0.6106870229007634,131,29.0,False +34.0,0.31666666666666665,0.9117647058823529,0.6833333333333333,0.5619834710743802,121,7.901437372,False +217.0,0.3046875,0.9459459459459459,0.6953125,0.5736434108527132,129,9.481177276,False +408.0,0.24615384615384617,0.9659090909090909,0.7538461538461538,0.6793893129770993,131,,False +166.0,0.24615384615384617,0.9864864864864865,0.7538461538461538,0.5725190839694656,131,15.30184805,False +333.0,0.16923076923076924,0.972972972972973,0.8307692307692308,0.5725190839694656,131,29.0,False +86.0,0.2558139534883721,0.958904109589041,0.7441860465116279,0.5615384615384615,130,8.807665982,False +154.0,0.3923076923076923,0.9295774647887324,0.6076923076923076,0.549618320610687,131,16.44353183,True diff --git a/benchmarking/__pycache__/hierarchical_bayes_numpyro.cpython-311.pyc b/benchmarking/__pycache__/hierarchical_bayes_numpyro.cpython-311.pyc index 2fb6d800..657b98c2 100644 Binary files a/benchmarking/__pycache__/hierarchical_bayes_numpyro.cpython-311.pyc and b/benchmarking/__pycache__/hierarchical_bayes_numpyro.cpython-311.pyc differ diff --git a/cluster_behavior_comparison.png b/cluster_behavior_comparison.png new file mode 100644 index 00000000..31991079 Binary files /dev/null and b/cluster_behavior_comparison.png differ diff --git a/correlation_heatmap.png b/correlation_heatmap.png new file mode 100644 index 00000000..34aa91c6 Binary files /dev/null and b/correlation_heatmap.png differ diff --git a/embedding_visualization.png b/embedding_visualization.png new file mode 100644 index 00000000..c491f6e9 Binary files /dev/null and b/embedding_visualization.png differ diff --git a/experiment_log.log b/experiment_log.log deleted file mode 100644 index 4b0e90d1..00000000 --- a/experiment_log.log +++ /dev/null @@ -1,3536 +0,0 @@ -2025-05-06 13:41:57,089 - INFO - ================================================================================ -2025-05-06 13:41:57,089 - INFO - EXPERIMENT CONFIG -2025-05-06 13:41:57,089 - INFO - ================================================================================ -2025-05-06 13:41:57,089 - INFO - Found 1 data files: ['data_128p_0.csv'] -2025-05-06 13:41:57,089 - INFO - Processing dataset: data_128p_0.csv -2025-05-06 13:41:57,089 - INFO - Loading dataset from data/optuna/data_128p_0.csv -2025-05-06 13:41:57,125 - INFO - Number of participants: 128 -2025-05-06 13:41:57,131 - INFO - Participant 0 (ID=0.0): α_reward=0.74, α_penalty=0.97 -2025-05-06 13:41:57,136 - INFO - Participant 1 (ID=1.0): α_reward=0.99, α_penalty=0.02 -2025-05-06 13:41:57,142 - INFO - Participant 2 (ID=2.0): α_reward=0.77, α_penalty=0.46 -2025-05-06 13:41:57,148 - INFO - Participant 3 (ID=3.0): α_reward=0.96, α_penalty=0.60 -2025-05-06 13:41:57,153 - INFO - Participant 4 (ID=4.0): α_reward=0.21, α_penalty=0.21 -2025-05-06 13:41:57,159 - INFO - Participant 5 (ID=5.0): α_reward=0.07, α_penalty=0.51 -2025-05-06 13:41:57,164 - INFO - Participant 6 (ID=6.0): α_reward=0.23, α_penalty=0.60 -2025-05-06 13:41:57,170 - INFO - Participant 7 (ID=7.0): α_reward=0.91, α_penalty=0.80 -2025-05-06 13:41:57,175 - INFO - Participant 8 (ID=8.0): α_reward=0.99, α_penalty=0.97 -2025-05-06 13:41:57,181 - INFO - Participant 9 (ID=9.0): α_reward=0.67, α_penalty=0.87 -2025-05-06 13:41:57,186 - INFO - Participant 10 (ID=10.0): α_reward=0.08, α_penalty=0.77 -2025-05-06 13:41:57,192 - INFO - Participant 11 (ID=11.0): α_reward=0.87, α_penalty=0.31 -2025-05-06 13:41:57,197 - INFO - Participant 12 (ID=12.0): α_reward=0.58, α_penalty=0.19 -2025-05-06 13:41:57,203 - INFO - Participant 13 (ID=13.0): α_reward=0.48, α_penalty=0.25 -2025-05-06 13:41:57,208 - INFO - Participant 14 (ID=14.0): α_reward=0.34, α_penalty=0.83 -2025-05-06 13:41:57,214 - INFO - Participant 15 (ID=15.0): α_reward=0.56, α_penalty=0.80 -2025-05-06 13:41:57,219 - INFO - Participant 16 (ID=16.0): α_reward=0.47, α_penalty=0.29 -2025-05-06 13:41:57,225 - INFO - Participant 17 (ID=17.0): α_reward=0.77, α_penalty=0.94 -2025-05-06 13:41:57,230 - INFO - Participant 18 (ID=18.0): α_reward=0.88, α_penalty=0.01 -2025-05-06 13:41:57,236 - INFO - Participant 19 (ID=19.0): α_reward=0.98, α_penalty=0.11 -2025-05-06 13:41:57,241 - INFO - Participant 20 (ID=20.0): α_reward=0.02, α_penalty=0.85 -2025-05-06 13:41:57,247 - INFO - Participant 21 (ID=21.0): α_reward=0.46, α_penalty=0.85 -2025-05-06 13:41:57,252 - INFO - Participant 22 (ID=22.0): α_reward=0.69, α_penalty=0.43 -2025-05-06 13:41:57,258 - INFO - Participant 23 (ID=23.0): α_reward=0.15, α_penalty=0.95 -2025-05-06 13:41:57,263 - INFO - Participant 24 (ID=24.0): α_reward=0.25, α_penalty=0.36 -2025-05-06 13:41:57,269 - INFO - Participant 25 (ID=25.0): α_reward=0.75, α_penalty=0.11 -2025-05-06 13:41:57,274 - INFO - Participant 26 (ID=26.0): α_reward=0.46, α_penalty=0.81 -2025-05-06 13:41:57,280 - INFO - Participant 27 (ID=27.0): α_reward=0.36, α_penalty=0.63 -2025-05-06 13:41:57,285 - INFO - Participant 28 (ID=28.0): α_reward=0.49, α_penalty=0.00 -2025-05-06 13:41:57,291 - INFO - Participant 29 (ID=29.0): α_reward=0.20, α_penalty=0.98 -2025-05-06 13:41:57,296 - INFO - Participant 30 (ID=30.0): α_reward=0.29, α_penalty=0.64 -2025-05-06 13:41:57,302 - INFO - Participant 31 (ID=31.0): α_reward=0.66, α_penalty=0.64 -2025-05-06 13:41:57,307 - INFO - Participant 32 (ID=32.0): α_reward=0.21, α_penalty=0.41 -2025-05-06 13:41:57,312 - INFO - Participant 33 (ID=33.0): α_reward=0.49, α_penalty=0.63 -2025-05-06 13:41:57,318 - INFO - Participant 34 (ID=34.0): α_reward=0.38, α_penalty=0.08 -2025-05-06 13:41:57,323 - INFO - Participant 35 (ID=35.0): α_reward=0.33, α_penalty=0.29 -2025-05-06 13:41:57,329 - INFO - Participant 36 (ID=36.0): α_reward=0.53, α_penalty=0.61 -2025-05-06 13:41:57,334 - INFO - Participant 37 (ID=37.0): α_reward=0.65, α_penalty=0.34 -2025-05-06 13:41:57,340 - INFO - Participant 38 (ID=38.0): α_reward=0.29, α_penalty=0.13 -2025-05-06 13:41:57,345 - INFO - Participant 39 (ID=39.0): α_reward=0.31, α_penalty=0.25 -2025-05-06 13:41:57,351 - INFO - Participant 40 (ID=40.0): α_reward=0.77, α_penalty=0.04 -2025-05-06 13:41:57,356 - INFO - Participant 41 (ID=41.0): α_reward=0.23, α_penalty=0.89 -2025-05-06 13:41:57,362 - INFO - Participant 42 (ID=42.0): α_reward=0.63, α_penalty=0.60 -2025-05-06 13:41:57,367 - INFO - Participant 43 (ID=43.0): α_reward=0.48, α_penalty=0.52 -2025-05-06 13:41:57,373 - INFO - Participant 44 (ID=44.0): α_reward=0.92, α_penalty=0.22 -2025-05-06 13:41:57,378 - INFO - Participant 45 (ID=45.0): α_reward=0.52, α_penalty=0.89 -2025-05-06 13:41:57,383 - INFO - Participant 46 (ID=46.0): α_reward=0.42, α_penalty=0.83 -2025-05-06 13:41:57,389 - INFO - Participant 47 (ID=47.0): α_reward=0.68, α_penalty=0.69 -2025-05-06 13:41:57,394 - INFO - Participant 48 (ID=48.0): α_reward=0.95, α_penalty=0.22 -2025-05-06 13:41:57,400 - INFO - Participant 49 (ID=49.0): α_reward=0.13, α_penalty=0.48 -2025-05-06 13:41:57,405 - INFO - Participant 50 (ID=50.0): α_reward=0.87, α_penalty=0.85 -2025-05-06 13:41:57,411 - INFO - Participant 51 (ID=51.0): α_reward=0.47, α_penalty=0.07 -2025-05-06 13:41:57,416 - INFO - Participant 52 (ID=52.0): α_reward=0.56, α_penalty=0.42 -2025-05-06 13:41:57,421 - INFO - Participant 53 (ID=53.0): α_reward=0.53, α_penalty=0.18 -2025-05-06 13:41:57,427 - INFO - Participant 54 (ID=54.0): α_reward=0.87, α_penalty=0.73 -2025-05-06 13:41:57,433 - INFO - Participant 55 (ID=55.0): α_reward=0.21, α_penalty=0.47 -2025-05-06 13:41:57,438 - INFO - Participant 56 (ID=56.0): α_reward=0.65, α_penalty=0.09 -2025-05-06 13:41:57,443 - INFO - Participant 57 (ID=57.0): α_reward=0.72, α_penalty=0.88 -2025-05-06 13:41:57,449 - INFO - Participant 58 (ID=58.0): α_reward=0.61, α_penalty=0.38 -2025-05-06 13:41:57,454 - INFO - Participant 59 (ID=59.0): α_reward=0.92, α_penalty=0.91 -2025-05-06 13:41:57,460 - INFO - Participant 60 (ID=60.0): α_reward=0.22, α_penalty=0.97 -2025-05-06 13:41:57,465 - INFO - Participant 61 (ID=61.0): α_reward=0.41, α_penalty=0.53 -2025-05-06 13:41:57,471 - INFO - Participant 62 (ID=62.0): α_reward=0.92, α_penalty=0.99 -2025-05-06 13:41:57,476 - INFO - Participant 63 (ID=63.0): α_reward=0.22, α_penalty=0.99 -2025-05-06 13:41:57,482 - INFO - Participant 64 (ID=64.0): α_reward=0.84, α_penalty=0.96 -2025-05-06 13:41:57,487 - INFO - Participant 65 (ID=65.0): α_reward=0.55, α_penalty=0.19 -2025-05-06 13:41:57,492 - INFO - Participant 66 (ID=66.0): α_reward=0.34, α_penalty=0.07 -2025-05-06 13:41:57,498 - INFO - Participant 67 (ID=67.0): α_reward=0.62, α_penalty=0.45 -2025-05-06 13:41:57,503 - INFO - Participant 68 (ID=68.0): α_reward=0.47, α_penalty=0.19 -2025-05-06 13:41:57,509 - INFO - Participant 69 (ID=69.0): α_reward=0.81, α_penalty=0.36 -2025-05-06 13:41:57,514 - INFO - Participant 70 (ID=70.0): α_reward=0.73, α_penalty=0.87 -2025-05-06 13:41:57,520 - INFO - Participant 71 (ID=71.0): α_reward=0.10, α_penalty=0.57 -2025-05-06 13:41:57,525 - INFO - Participant 72 (ID=72.0): α_reward=0.78, α_penalty=0.50 -2025-05-06 13:41:57,530 - INFO - Participant 73 (ID=73.0): α_reward=0.82, α_penalty=0.70 -2025-05-06 13:41:57,536 - INFO - Participant 74 (ID=74.0): α_reward=0.00, α_penalty=0.98 -2025-05-06 13:41:57,542 - INFO - Participant 75 (ID=75.0): α_reward=0.42, α_penalty=0.26 -2025-05-06 13:41:57,547 - INFO - Participant 76 (ID=76.0): α_reward=0.83, α_penalty=0.39 -2025-05-06 13:41:57,553 - INFO - Participant 77 (ID=77.0): α_reward=0.75, α_penalty=0.18 -2025-05-06 13:41:57,558 - INFO - Participant 78 (ID=78.0): α_reward=0.97, α_penalty=0.44 -2025-05-06 13:41:57,563 - INFO - Participant 79 (ID=79.0): α_reward=0.45, α_penalty=0.57 -2025-05-06 13:41:57,569 - INFO - Participant 80 (ID=80.0): α_reward=0.63, α_penalty=0.78 -2025-05-06 13:41:57,574 - INFO - Participant 81 (ID=81.0): α_reward=0.29, α_penalty=0.24 -2025-05-06 13:41:57,580 - INFO - Participant 82 (ID=82.0): α_reward=0.71, α_penalty=0.15 -2025-05-06 13:41:57,585 - INFO - Participant 83 (ID=83.0): α_reward=0.71, α_penalty=0.66 -2025-05-06 13:41:57,591 - INFO - Participant 84 (ID=84.0): α_reward=0.97, α_penalty=0.79 -2025-05-06 13:41:57,596 - INFO - Participant 85 (ID=85.0): α_reward=1.00, α_penalty=0.95 -2025-05-06 13:41:57,602 - INFO - Participant 86 (ID=86.0): α_reward=0.56, α_penalty=0.08 -2025-05-06 13:41:57,607 - INFO - Participant 87 (ID=87.0): α_reward=0.59, α_penalty=0.83 -2025-05-06 13:41:57,613 - INFO - Participant 88 (ID=88.0): α_reward=0.32, α_penalty=0.60 -2025-05-06 13:41:57,619 - INFO - Participant 89 (ID=89.0): α_reward=0.20, α_penalty=0.84 -2025-05-06 13:41:57,624 - INFO - Participant 90 (ID=90.0): α_reward=0.34, α_penalty=1.00 -2025-05-06 13:41:57,630 - INFO - Participant 91 (ID=91.0): α_reward=0.19, α_penalty=0.99 -2025-05-06 13:41:57,636 - INFO - Participant 92 (ID=92.0): α_reward=0.20, α_penalty=0.91 -2025-05-06 13:41:57,641 - INFO - Participant 93 (ID=93.0): α_reward=0.31, α_penalty=0.21 -2025-05-06 13:41:57,646 - INFO - Participant 94 (ID=94.0): α_reward=0.58, α_penalty=0.41 -2025-05-06 13:41:57,652 - INFO - Participant 95 (ID=95.0): α_reward=0.80, α_penalty=0.54 -2025-05-06 13:41:57,657 - INFO - Participant 96 (ID=96.0): α_reward=0.74, α_penalty=0.80 -2025-05-06 13:41:57,663 - INFO - Participant 97 (ID=97.0): α_reward=0.59, α_penalty=0.16 -2025-05-06 13:41:57,668 - INFO - Participant 98 (ID=98.0): α_reward=0.54, α_penalty=0.17 -2025-05-06 13:41:57,674 - INFO - Participant 99 (ID=99.0): α_reward=0.17, α_penalty=0.16 -2025-05-06 13:41:57,679 - INFO - Participant 100 (ID=100.0): α_reward=0.79, α_penalty=0.40 -2025-05-06 13:41:57,684 - INFO - Participant 101 (ID=101.0): α_reward=0.32, α_penalty=0.05 -2025-05-06 13:41:57,689 - INFO - Participant 102 (ID=102.0): α_reward=0.87, α_penalty=0.81 -2025-05-06 13:41:57,694 - INFO - Participant 103 (ID=103.0): α_reward=0.90, α_penalty=0.11 -2025-05-06 13:41:57,700 - INFO - Participant 104 (ID=104.0): α_reward=0.44, α_penalty=0.12 -2025-05-06 13:41:57,706 - INFO - Participant 105 (ID=105.0): α_reward=0.59, α_penalty=0.50 -2025-05-06 13:41:57,712 - INFO - Participant 106 (ID=106.0): α_reward=0.84, α_penalty=0.50 -2025-05-06 13:41:57,717 - INFO - Participant 107 (ID=107.0): α_reward=0.48, α_penalty=0.54 -2025-05-06 13:41:57,723 - INFO - Participant 108 (ID=108.0): α_reward=0.56, α_penalty=0.75 -2025-05-06 13:41:57,729 - INFO - Participant 109 (ID=109.0): α_reward=0.53, α_penalty=0.11 -2025-05-06 13:41:57,734 - INFO - Participant 110 (ID=110.0): α_reward=0.52, α_penalty=0.40 -2025-05-06 13:41:57,740 - INFO - Participant 111 (ID=111.0): α_reward=0.61, α_penalty=0.74 -2025-05-06 13:41:57,745 - INFO - Participant 112 (ID=112.0): α_reward=0.64, α_penalty=0.56 -2025-05-06 13:41:57,751 - INFO - Participant 113 (ID=113.0): α_reward=0.44, α_penalty=0.40 -2025-05-06 13:41:57,757 - INFO - Participant 114 (ID=114.0): α_reward=0.74, α_penalty=0.91 -2025-05-06 13:41:57,762 - INFO - Participant 115 (ID=115.0): α_reward=0.09, α_penalty=0.27 -2025-05-06 13:41:57,768 - INFO - Participant 116 (ID=116.0): α_reward=0.99, α_penalty=0.92 -2025-05-06 13:41:57,774 - INFO - Participant 117 (ID=117.0): α_reward=0.90, α_penalty=0.87 -2025-05-06 13:41:57,779 - INFO - Participant 118 (ID=118.0): α_reward=0.21, α_penalty=0.27 -2025-05-06 13:41:57,785 - INFO - Participant 119 (ID=119.0): α_reward=0.71, α_penalty=0.69 -2025-05-06 13:41:57,790 - INFO - Participant 120 (ID=120.0): α_reward=0.43, α_penalty=0.05 -2025-05-06 13:41:57,796 - INFO - Participant 121 (ID=121.0): α_reward=0.11, α_penalty=0.27 -2025-05-06 13:41:57,802 - INFO - Participant 122 (ID=122.0): α_reward=0.80, α_penalty=0.43 -2025-05-06 13:41:57,807 - INFO - Participant 123 (ID=123.0): α_reward=0.74, α_penalty=0.44 -2025-05-06 13:41:57,813 - INFO - Participant 124 (ID=124.0): α_reward=0.18, α_penalty=0.36 -2025-05-06 13:41:57,818 - INFO - Participant 125 (ID=125.0): α_reward=0.86, α_penalty=0.09 -2025-05-06 13:41:57,824 - INFO - Participant 126 (ID=126.0): α_reward=0.05, α_penalty=0.52 -2025-05-06 13:41:57,830 - INFO - Participant 127 (ID=127.0): α_reward=0.41, α_penalty=0.26 -2025-05-06 13:41:57,830 - INFO - Participant 0 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 1 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 2 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 3 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 4 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 5 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 6 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 7 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 8 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 9 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 10 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 11 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 12 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 13 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 14 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 15 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 16 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 17 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 18 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 19 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 20 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 21 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 22 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 23 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 24 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 25 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 26 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 27 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 28 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 29 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 30 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 31 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 32 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 33 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 34 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 35 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 36 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 37 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 38 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 39 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 40 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 41 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 42 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 43 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 44 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,830 - INFO - Participant 45 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 46 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 47 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 48 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 49 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 50 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 51 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 52 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 53 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 54 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 55 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 56 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 57 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 58 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 59 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 60 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 61 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 62 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 63 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 64 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 65 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 66 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 67 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 68 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 69 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 70 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 71 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 72 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 73 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 74 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 75 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 76 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 77 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 78 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 79 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 80 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 81 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 82 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 83 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 84 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 85 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 86 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 87 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 88 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 89 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 90 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 91 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 92 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 93 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 94 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 95 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 96 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 97 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 98 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 99 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 100 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 101 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 102 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 103 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 104 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 105 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 106 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 107 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 108 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 109 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 110 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 111 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 112 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 113 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,831 - INFO - Participant 114 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 115 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 116 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 117 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 118 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 119 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 120 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 121 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 122 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 123 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 124 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 125 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 126 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Participant 127 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Combined xs shape after concatenation: torch.Size([128, 200, 5]) -2025-05-06 13:41:57,832 - INFO - Combined ys shape after concatenation: torch.Size([128, 200, 2]) -2025-05-06 13:41:57,832 - INFO - Combined dataset shape: X=torch.Size([128, 200, 5]), Y=torch.Size([128, 200, 2]) -2025-05-06 13:41:57,832 - INFO - Total unique participants: 128 -2025-05-06 13:41:57,832 - INFO - Train/test split ratio: 0.8/0.19999999999999996 of trials within each participant -2025-05-06 13:41:57,833 - INFO - Participant 0.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 1.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 2.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 3.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 4.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 5.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 6.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 7.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 8.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 9.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 10.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 11.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 12.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 13.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 14.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 15.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,833 - INFO - Participant 16.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 17.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 18.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 19.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 20.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 21.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 22.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 23.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 24.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 25.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 26.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 27.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 28.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 29.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 30.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 31.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 32.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 33.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 34.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 35.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,834 - INFO - Participant 36.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 37.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 38.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 39.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 40.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 41.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 42.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 43.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 44.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 45.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 46.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 47.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 48.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 49.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 50.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 51.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 52.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 53.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 54.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 55.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 56.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,835 - INFO - Participant 57.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 58.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 59.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 60.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 61.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 62.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 63.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 64.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 65.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 66.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 67.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 68.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 69.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 70.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 71.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 72.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 73.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 74.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 75.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 76.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 77.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 78.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,836 - INFO - Participant 79.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 80.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 81.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 82.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 83.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 84.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 85.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 86.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 87.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 88.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 89.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 90.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 91.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 92.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 93.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 94.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 95.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 96.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 97.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 98.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 99.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 100.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,837 - INFO - Participant 101.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 102.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 103.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 104.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 105.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 106.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 107.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 108.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 109.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 110.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 111.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 112.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 113.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 114.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 115.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 116.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 117.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 118.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 119.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 120.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 121.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,838 - INFO - Participant 122.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,839 - INFO - Participant 123.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,839 - INFO - Participant 124.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,839 - INFO - Participant 125.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,839 - INFO - Participant 126.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,839 - INFO - Participant 127.0: 160 trials for training, 40 trials for validation -2025-05-06 13:41:57,839 - INFO - Train xs shape: torch.Size([128, 160, 5]) -2025-05-06 13:41:57,839 - INFO - Train ys shape: torch.Size([128, 160, 2]) -2025-05-06 13:41:57,839 - INFO - Validation xs shape: torch.Size([128, 40, 5]) -2025-05-06 13:41:57,839 - INFO - Validation ys shape: torch.Size([128, 40, 2]) -2025-05-06 13:41:57,839 - INFO - Train dataset: torch.Size([128, 160, 5]), Validation dataset: torch.Size([128, 40, 5]) -2025-05-06 13:41:57,839 - INFO - Starting hyperparameter optimization... -2025-05-06 13:41:57,840 - INFO - Trial 0: l1_weight_decay=0.001688, l2_weight_decay=0.000005 -2025-05-06 13:42:05,086 - INFO - Trial 0: RNN Train Loss: 0.5222022; SPICE Train Loss: 2.994627576656261 -2025-05-06 13:42:05,115 - INFO - Trial 0: Average Validation Loss: 3.4181, Eval count: 40 -2025-05-06 13:42:05,116 - INFO - Best hyperparameters: {'l1_weight_decay': 0.0016881945590593564, 'l2_weight_decay': 4.967957420311853e-06} -2025-05-06 13:42:05,116 - INFO - Best validation loss: 3.4181 -2025-05-06 13:44:06,184 - INFO - ================================================================================ -2025-05-06 13:44:06,184 - INFO - EXPERIMENT CONFIG -2025-05-06 13:44:06,184 - INFO - ================================================================================ -2025-05-06 13:44:06,184 - INFO - Found 1 data files: ['data_128p_0.csv'] -2025-05-06 13:44:06,184 - INFO - Processing dataset: data_128p_0.csv -2025-05-06 13:44:06,184 - INFO - Loading dataset from data/optuna/data_128p_0.csv -2025-05-06 13:44:06,223 - INFO - Number of participants: 128 -2025-05-06 13:44:06,229 - INFO - Participant 0 (ID=0.0): α_reward=0.74, α_penalty=0.97 -2025-05-06 13:44:06,235 - INFO - Participant 1 (ID=1.0): α_reward=0.99, α_penalty=0.02 -2025-05-06 13:44:06,241 - INFO - Participant 2 (ID=2.0): α_reward=0.77, α_penalty=0.46 -2025-05-06 13:44:06,247 - INFO - Participant 3 (ID=3.0): α_reward=0.96, α_penalty=0.60 -2025-05-06 13:44:06,253 - INFO - Participant 4 (ID=4.0): α_reward=0.21, α_penalty=0.21 -2025-05-06 13:44:06,259 - INFO - Participant 5 (ID=5.0): α_reward=0.07, α_penalty=0.51 -2025-05-06 13:44:06,265 - INFO - Participant 6 (ID=6.0): α_reward=0.23, α_penalty=0.60 -2025-05-06 13:44:06,271 - INFO - Participant 7 (ID=7.0): α_reward=0.91, α_penalty=0.80 -2025-05-06 13:44:06,277 - INFO - Participant 8 (ID=8.0): α_reward=0.99, α_penalty=0.97 -2025-05-06 13:44:06,282 - INFO - Participant 9 (ID=9.0): α_reward=0.67, α_penalty=0.87 -2025-05-06 13:44:06,288 - INFO - Participant 10 (ID=10.0): α_reward=0.08, α_penalty=0.77 -2025-05-06 13:44:06,294 - INFO - Participant 11 (ID=11.0): α_reward=0.87, α_penalty=0.31 -2025-05-06 13:44:06,300 - INFO - Participant 12 (ID=12.0): α_reward=0.58, α_penalty=0.19 -2025-05-06 13:44:06,306 - INFO - Participant 13 (ID=13.0): α_reward=0.48, α_penalty=0.25 -2025-05-06 13:44:06,312 - INFO - Participant 14 (ID=14.0): α_reward=0.34, α_penalty=0.83 -2025-05-06 13:44:06,318 - INFO - Participant 15 (ID=15.0): α_reward=0.56, α_penalty=0.80 -2025-05-06 13:44:06,323 - INFO - Participant 16 (ID=16.0): α_reward=0.47, α_penalty=0.29 -2025-05-06 13:44:06,329 - INFO - Participant 17 (ID=17.0): α_reward=0.77, α_penalty=0.94 -2025-05-06 13:44:06,335 - INFO - Participant 18 (ID=18.0): α_reward=0.88, α_penalty=0.01 -2025-05-06 13:44:06,341 - INFO - Participant 19 (ID=19.0): α_reward=0.98, α_penalty=0.11 -2025-05-06 13:44:06,347 - INFO - Participant 20 (ID=20.0): α_reward=0.02, α_penalty=0.85 -2025-05-06 13:44:06,353 - INFO - Participant 21 (ID=21.0): α_reward=0.46, α_penalty=0.85 -2025-05-06 13:44:06,358 - INFO - Participant 22 (ID=22.0): α_reward=0.69, α_penalty=0.43 -2025-05-06 13:44:06,364 - INFO - Participant 23 (ID=23.0): α_reward=0.15, α_penalty=0.95 -2025-05-06 13:44:06,370 - INFO - Participant 24 (ID=24.0): α_reward=0.25, α_penalty=0.36 -2025-05-06 13:44:06,375 - INFO - Participant 25 (ID=25.0): α_reward=0.75, α_penalty=0.11 -2025-05-06 13:44:06,381 - INFO - Participant 26 (ID=26.0): α_reward=0.46, α_penalty=0.81 -2025-05-06 13:44:06,387 - INFO - Participant 27 (ID=27.0): α_reward=0.36, α_penalty=0.63 -2025-05-06 13:44:06,393 - INFO - Participant 28 (ID=28.0): α_reward=0.49, α_penalty=0.00 -2025-05-06 13:44:06,399 - INFO - Participant 29 (ID=29.0): α_reward=0.20, α_penalty=0.98 -2025-05-06 13:44:06,404 - INFO - Participant 30 (ID=30.0): α_reward=0.29, α_penalty=0.64 -2025-05-06 13:44:06,410 - INFO - Participant 31 (ID=31.0): α_reward=0.66, α_penalty=0.64 -2025-05-06 13:44:06,416 - INFO - Participant 32 (ID=32.0): α_reward=0.21, α_penalty=0.41 -2025-05-06 13:44:06,421 - INFO - Participant 33 (ID=33.0): α_reward=0.49, α_penalty=0.63 -2025-05-06 13:44:06,427 - INFO - Participant 34 (ID=34.0): α_reward=0.38, α_penalty=0.08 -2025-05-06 13:44:06,432 - INFO - Participant 35 (ID=35.0): α_reward=0.33, α_penalty=0.29 -2025-05-06 13:44:06,438 - INFO - Participant 36 (ID=36.0): α_reward=0.53, α_penalty=0.61 -2025-05-06 13:44:06,444 - INFO - Participant 37 (ID=37.0): α_reward=0.65, α_penalty=0.34 -2025-05-06 13:44:06,449 - INFO - Participant 38 (ID=38.0): α_reward=0.29, α_penalty=0.13 -2025-05-06 13:44:06,455 - INFO - Participant 39 (ID=39.0): α_reward=0.31, α_penalty=0.25 -2025-05-06 13:44:06,460 - INFO - Participant 40 (ID=40.0): α_reward=0.77, α_penalty=0.04 -2025-05-06 13:44:06,466 - INFO - Participant 41 (ID=41.0): α_reward=0.23, α_penalty=0.89 -2025-05-06 13:44:06,471 - INFO - Participant 42 (ID=42.0): α_reward=0.63, α_penalty=0.60 -2025-05-06 13:44:06,477 - INFO - Participant 43 (ID=43.0): α_reward=0.48, α_penalty=0.52 -2025-05-06 13:44:06,483 - INFO - Participant 44 (ID=44.0): α_reward=0.92, α_penalty=0.22 -2025-05-06 13:44:06,488 - INFO - Participant 45 (ID=45.0): α_reward=0.52, α_penalty=0.89 -2025-05-06 13:44:06,494 - INFO - Participant 46 (ID=46.0): α_reward=0.42, α_penalty=0.83 -2025-05-06 13:44:06,499 - INFO - Participant 47 (ID=47.0): α_reward=0.68, α_penalty=0.69 -2025-05-06 13:44:06,505 - INFO - Participant 48 (ID=48.0): α_reward=0.95, α_penalty=0.22 -2025-05-06 13:44:06,510 - INFO - Participant 49 (ID=49.0): α_reward=0.13, α_penalty=0.48 -2025-05-06 13:44:06,516 - INFO - Participant 50 (ID=50.0): α_reward=0.87, α_penalty=0.85 -2025-05-06 13:44:06,522 - INFO - Participant 51 (ID=51.0): α_reward=0.47, α_penalty=0.07 -2025-05-06 13:44:06,527 - INFO - Participant 52 (ID=52.0): α_reward=0.56, α_penalty=0.42 -2025-05-06 13:44:06,533 - INFO - Participant 53 (ID=53.0): α_reward=0.53, α_penalty=0.18 -2025-05-06 13:44:06,538 - INFO - Participant 54 (ID=54.0): α_reward=0.87, α_penalty=0.73 -2025-05-06 13:44:06,544 - INFO - Participant 55 (ID=55.0): α_reward=0.21, α_penalty=0.47 -2025-05-06 13:44:06,549 - INFO - Participant 56 (ID=56.0): α_reward=0.65, α_penalty=0.09 -2025-05-06 13:44:06,555 - INFO - Participant 57 (ID=57.0): α_reward=0.72, α_penalty=0.88 -2025-05-06 13:44:06,561 - INFO - Participant 58 (ID=58.0): α_reward=0.61, α_penalty=0.38 -2025-05-06 13:44:06,566 - INFO - Participant 59 (ID=59.0): α_reward=0.92, α_penalty=0.91 -2025-05-06 13:44:06,571 - INFO - Participant 60 (ID=60.0): α_reward=0.22, α_penalty=0.97 -2025-05-06 13:44:06,577 - INFO - Participant 61 (ID=61.0): α_reward=0.41, α_penalty=0.53 -2025-05-06 13:44:06,583 - INFO - Participant 62 (ID=62.0): α_reward=0.92, α_penalty=0.99 -2025-05-06 13:44:06,589 - INFO - Participant 63 (ID=63.0): α_reward=0.22, α_penalty=0.99 -2025-05-06 13:44:06,594 - INFO - Participant 64 (ID=64.0): α_reward=0.84, α_penalty=0.96 -2025-05-06 13:44:06,600 - INFO - Participant 65 (ID=65.0): α_reward=0.55, α_penalty=0.19 -2025-05-06 13:44:06,605 - INFO - Participant 66 (ID=66.0): α_reward=0.34, α_penalty=0.07 -2025-05-06 13:44:06,612 - INFO - Participant 67 (ID=67.0): α_reward=0.62, α_penalty=0.45 -2025-05-06 13:44:06,617 - INFO - Participant 68 (ID=68.0): α_reward=0.47, α_penalty=0.19 -2025-05-06 13:44:06,623 - INFO - Participant 69 (ID=69.0): α_reward=0.81, α_penalty=0.36 -2025-05-06 13:44:06,629 - INFO - Participant 70 (ID=70.0): α_reward=0.73, α_penalty=0.87 -2025-05-06 13:44:06,635 - INFO - Participant 71 (ID=71.0): α_reward=0.10, α_penalty=0.57 -2025-05-06 13:44:06,641 - INFO - Participant 72 (ID=72.0): α_reward=0.78, α_penalty=0.50 -2025-05-06 13:44:06,647 - INFO - Participant 73 (ID=73.0): α_reward=0.82, α_penalty=0.70 -2025-05-06 13:44:06,652 - INFO - Participant 74 (ID=74.0): α_reward=0.00, α_penalty=0.98 -2025-05-06 13:44:06,658 - INFO - Participant 75 (ID=75.0): α_reward=0.42, α_penalty=0.26 -2025-05-06 13:44:06,664 - INFO - Participant 76 (ID=76.0): α_reward=0.83, α_penalty=0.39 -2025-05-06 13:44:06,670 - INFO - Participant 77 (ID=77.0): α_reward=0.75, α_penalty=0.18 -2025-05-06 13:44:06,676 - INFO - Participant 78 (ID=78.0): α_reward=0.97, α_penalty=0.44 -2025-05-06 13:44:06,681 - INFO - Participant 79 (ID=79.0): α_reward=0.45, α_penalty=0.57 -2025-05-06 13:44:06,687 - INFO - Participant 80 (ID=80.0): α_reward=0.63, α_penalty=0.78 -2025-05-06 13:44:06,694 - INFO - Participant 81 (ID=81.0): α_reward=0.29, α_penalty=0.24 -2025-05-06 13:44:06,699 - INFO - Participant 82 (ID=82.0): α_reward=0.71, α_penalty=0.15 -2025-05-06 13:44:06,705 - INFO - Participant 83 (ID=83.0): α_reward=0.71, α_penalty=0.66 -2025-05-06 13:44:06,710 - INFO - Participant 84 (ID=84.0): α_reward=0.97, α_penalty=0.79 -2025-05-06 13:44:06,715 - INFO - Participant 85 (ID=85.0): α_reward=1.00, α_penalty=0.95 -2025-05-06 13:44:06,720 - INFO - Participant 86 (ID=86.0): α_reward=0.56, α_penalty=0.08 -2025-05-06 13:44:06,725 - INFO - Participant 87 (ID=87.0): α_reward=0.59, α_penalty=0.83 -2025-05-06 13:44:06,730 - INFO - Participant 88 (ID=88.0): α_reward=0.32, α_penalty=0.60 -2025-05-06 13:44:06,735 - INFO - Participant 89 (ID=89.0): α_reward=0.20, α_penalty=0.84 -2025-05-06 13:44:06,740 - INFO - Participant 90 (ID=90.0): α_reward=0.34, α_penalty=1.00 -2025-05-06 13:44:06,745 - INFO - Participant 91 (ID=91.0): α_reward=0.19, α_penalty=0.99 -2025-05-06 13:44:06,751 - INFO - Participant 92 (ID=92.0): α_reward=0.20, α_penalty=0.91 -2025-05-06 13:44:06,756 - INFO - Participant 93 (ID=93.0): α_reward=0.31, α_penalty=0.21 -2025-05-06 13:44:06,761 - INFO - Participant 94 (ID=94.0): α_reward=0.58, α_penalty=0.41 -2025-05-06 13:44:06,767 - INFO - Participant 95 (ID=95.0): α_reward=0.80, α_penalty=0.54 -2025-05-06 13:44:06,772 - INFO - Participant 96 (ID=96.0): α_reward=0.74, α_penalty=0.80 -2025-05-06 13:44:06,778 - INFO - Participant 97 (ID=97.0): α_reward=0.59, α_penalty=0.16 -2025-05-06 13:44:06,783 - INFO - Participant 98 (ID=98.0): α_reward=0.54, α_penalty=0.17 -2025-05-06 13:44:06,788 - INFO - Participant 99 (ID=99.0): α_reward=0.17, α_penalty=0.16 -2025-05-06 13:44:06,794 - INFO - Participant 100 (ID=100.0): α_reward=0.79, α_penalty=0.40 -2025-05-06 13:44:06,799 - INFO - Participant 101 (ID=101.0): α_reward=0.32, α_penalty=0.05 -2025-05-06 13:44:06,805 - INFO - Participant 102 (ID=102.0): α_reward=0.87, α_penalty=0.81 -2025-05-06 13:44:06,810 - INFO - Participant 103 (ID=103.0): α_reward=0.90, α_penalty=0.11 -2025-05-06 13:44:06,815 - INFO - Participant 104 (ID=104.0): α_reward=0.44, α_penalty=0.12 -2025-05-06 13:44:06,821 - INFO - Participant 105 (ID=105.0): α_reward=0.59, α_penalty=0.50 -2025-05-06 13:44:06,826 - INFO - Participant 106 (ID=106.0): α_reward=0.84, α_penalty=0.50 -2025-05-06 13:44:06,832 - INFO - Participant 107 (ID=107.0): α_reward=0.48, α_penalty=0.54 -2025-05-06 13:44:06,838 - INFO - Participant 108 (ID=108.0): α_reward=0.56, α_penalty=0.75 -2025-05-06 13:44:06,843 - INFO - Participant 109 (ID=109.0): α_reward=0.53, α_penalty=0.11 -2025-05-06 13:44:06,849 - INFO - Participant 110 (ID=110.0): α_reward=0.52, α_penalty=0.40 -2025-05-06 13:44:06,854 - INFO - Participant 111 (ID=111.0): α_reward=0.61, α_penalty=0.74 -2025-05-06 13:44:06,860 - INFO - Participant 112 (ID=112.0): α_reward=0.64, α_penalty=0.56 -2025-05-06 13:44:06,865 - INFO - Participant 113 (ID=113.0): α_reward=0.44, α_penalty=0.40 -2025-05-06 13:44:06,870 - INFO - Participant 114 (ID=114.0): α_reward=0.74, α_penalty=0.91 -2025-05-06 13:44:06,876 - INFO - Participant 115 (ID=115.0): α_reward=0.09, α_penalty=0.27 -2025-05-06 13:44:06,881 - INFO - Participant 116 (ID=116.0): α_reward=0.99, α_penalty=0.92 -2025-05-06 13:44:06,887 - INFO - Participant 117 (ID=117.0): α_reward=0.90, α_penalty=0.87 -2025-05-06 13:44:06,892 - INFO - Participant 118 (ID=118.0): α_reward=0.21, α_penalty=0.27 -2025-05-06 13:44:06,898 - INFO - Participant 119 (ID=119.0): α_reward=0.71, α_penalty=0.69 -2025-05-06 13:44:06,903 - INFO - Participant 120 (ID=120.0): α_reward=0.43, α_penalty=0.05 -2025-05-06 13:44:06,909 - INFO - Participant 121 (ID=121.0): α_reward=0.11, α_penalty=0.27 -2025-05-06 13:44:06,914 - INFO - Participant 122 (ID=122.0): α_reward=0.80, α_penalty=0.43 -2025-05-06 13:44:06,920 - INFO - Participant 123 (ID=123.0): α_reward=0.74, α_penalty=0.44 -2025-05-06 13:44:06,925 - INFO - Participant 124 (ID=124.0): α_reward=0.18, α_penalty=0.36 -2025-05-06 13:44:06,931 - INFO - Participant 125 (ID=125.0): α_reward=0.86, α_penalty=0.09 -2025-05-06 13:44:06,936 - INFO - Participant 126 (ID=126.0): α_reward=0.05, α_penalty=0.52 -2025-05-06 13:44:06,942 - INFO - Participant 127 (ID=127.0): α_reward=0.41, α_penalty=0.26 -2025-05-06 13:44:06,942 - INFO - Participant 0 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 1 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 2 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 3 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 4 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 5 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 6 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 7 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 8 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 9 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 10 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 11 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 12 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 13 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 14 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 15 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 16 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 17 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 18 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 19 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 20 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 21 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 22 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 23 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 24 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 25 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 26 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 27 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 28 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 29 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 30 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 31 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 32 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 33 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 34 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 35 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 36 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 37 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 38 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 39 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 40 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 41 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 42 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 43 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 44 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 45 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 46 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 47 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 48 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 49 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 50 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 51 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 52 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,942 - INFO - Participant 53 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 54 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 55 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 56 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 57 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 58 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 59 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 60 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 61 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 62 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 63 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 64 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 65 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 66 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 67 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 68 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 69 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 70 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 71 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 72 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 73 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 74 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 75 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 76 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 77 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 78 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 79 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 80 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 81 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 82 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 83 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 84 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 85 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 86 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 87 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 88 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 89 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 90 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 91 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 92 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 93 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 94 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 95 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 96 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 97 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 98 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 99 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 100 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 101 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 102 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 103 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 104 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 105 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 106 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 107 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 108 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 109 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 110 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 111 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 112 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 113 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 114 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 115 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 116 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 117 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 118 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 119 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 120 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 121 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 122 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 123 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,943 - INFO - Participant 124 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,944 - INFO - Participant 125 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,944 - INFO - Participant 126 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,944 - INFO - Participant 127 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:44:06,944 - INFO - Combined xs shape after concatenation: torch.Size([128, 200, 5]) -2025-05-06 13:44:06,944 - INFO - Combined ys shape after concatenation: torch.Size([128, 200, 2]) -2025-05-06 13:44:06,944 - INFO - Combined dataset shape: X=torch.Size([128, 200, 5]), Y=torch.Size([128, 200, 2]) -2025-05-06 13:44:06,944 - INFO - Total unique participants: 128 -2025-05-06 13:44:06,944 - INFO - Train/test split ratio: 0.8/0.19999999999999996 of trials within each participant -2025-05-06 13:44:06,944 - INFO - Participant 0.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,944 - INFO - Participant 1.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 2.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 3.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 4.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 5.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 6.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 7.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 8.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 9.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 10.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 11.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 12.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 13.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 14.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 15.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 16.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 17.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 18.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 19.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 20.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,945 - INFO - Participant 21.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 22.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 23.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 24.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 25.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 26.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 27.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 28.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 29.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 30.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 31.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 32.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 33.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 34.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 35.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 36.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 37.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 38.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 39.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 40.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,946 - INFO - Participant 41.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 42.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 43.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 44.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 45.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 46.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 47.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 48.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 49.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 50.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 51.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 52.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 53.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 54.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 55.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 56.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 57.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 58.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 59.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 60.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 61.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 62.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,947 - INFO - Participant 63.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 64.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 65.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 66.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 67.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 68.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 69.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 70.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 71.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 72.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 73.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 74.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 75.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 76.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 77.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 78.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 79.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 80.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 81.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 82.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 83.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 84.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,948 - INFO - Participant 85.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 86.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 87.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 88.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 89.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 90.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 91.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 92.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 93.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 94.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 95.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 96.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 97.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 98.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 99.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 100.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 101.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 102.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,949 - INFO - Participant 103.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 104.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 105.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 106.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 107.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 108.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 109.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 110.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 111.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 112.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 113.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 114.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,950 - INFO - Participant 115.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,951 - INFO - Participant 116.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,951 - INFO - Participant 117.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,951 - INFO - Participant 118.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,951 - INFO - Participant 119.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,952 - INFO - Participant 120.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,952 - INFO - Participant 121.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,952 - INFO - Participant 122.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,952 - INFO - Participant 123.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,952 - INFO - Participant 124.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,952 - INFO - Participant 125.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,953 - INFO - Participant 126.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,953 - INFO - Participant 127.0: 160 trials for training, 40 trials for validation -2025-05-06 13:44:06,953 - INFO - Train xs shape: torch.Size([128, 160, 5]) -2025-05-06 13:44:06,953 - INFO - Train ys shape: torch.Size([128, 160, 2]) -2025-05-06 13:44:06,953 - INFO - Validation xs shape: torch.Size([128, 40, 5]) -2025-05-06 13:44:06,953 - INFO - Validation ys shape: torch.Size([128, 40, 2]) -2025-05-06 13:44:06,954 - INFO - Train dataset: torch.Size([128, 160, 5]), Validation dataset: torch.Size([128, 40, 5]) -2025-05-06 13:44:06,954 - INFO - Starting hyperparameter optimization... -2025-05-06 13:44:06,955 - INFO - Trial 0: l1_weight_decay=0.000090, l2_weight_decay=0.005960 -2025-05-06 13:44:13,936 - INFO - Trial 0: RNN Train Loss: 0.5222022; SPICE Train Loss: 2.994627576656261 -2025-05-06 13:44:13,964 - INFO - Trial 0: Average Validation Loss: 3.4181, Eval count: 40 -2025-05-06 13:44:13,965 - INFO - Best hyperparameters: {'l1_weight_decay': 9.023772557409192e-05, 'l2_weight_decay': 0.0059604516648050785} -2025-05-06 13:44:13,965 - INFO - Best validation loss: 3.4181 -2025-05-06 13:44:18,839 - INFO - Final RNN training loss: 0.6296792 -2025-05-06 13:44:18,840 - INFO - Evaluating with SINDy - fitting separate models for each participant's validation trials -2025-05-06 13:44:18,840 - INFO - Processing participant 0.0... -2025-05-06 13:44:18,840 - INFO - Fitting SINDy model for participant 0.0 -2025-05-06 13:44:18,840 - WARNING - Error processing participant 0.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,840 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,840 - INFO - Processing participant 1.0... -2025-05-06 13:44:18,840 - INFO - Fitting SINDy model for participant 1.0 -2025-05-06 13:44:18,840 - WARNING - Error processing participant 1.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,841 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,841 - INFO - Processing participant 2.0... -2025-05-06 13:44:18,841 - INFO - Fitting SINDy model for participant 2.0 -2025-05-06 13:44:18,841 - WARNING - Error processing participant 2.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,841 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,841 - INFO - Processing participant 3.0... -2025-05-06 13:44:18,841 - INFO - Fitting SINDy model for participant 3.0 -2025-05-06 13:44:18,841 - WARNING - Error processing participant 3.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,841 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,841 - INFO - Processing participant 4.0... -2025-05-06 13:44:18,841 - INFO - Fitting SINDy model for participant 4.0 -2025-05-06 13:44:18,841 - WARNING - Error processing participant 4.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,841 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,841 - INFO - Processing participant 5.0... -2025-05-06 13:44:18,841 - INFO - Fitting SINDy model for participant 5.0 -2025-05-06 13:44:18,841 - WARNING - Error processing participant 5.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,842 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,842 - INFO - Processing participant 6.0... -2025-05-06 13:44:18,842 - INFO - Fitting SINDy model for participant 6.0 -2025-05-06 13:44:18,842 - WARNING - Error processing participant 6.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,842 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,842 - INFO - Processing participant 7.0... -2025-05-06 13:44:18,842 - INFO - Fitting SINDy model for participant 7.0 -2025-05-06 13:44:18,842 - WARNING - Error processing participant 7.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,842 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,842 - INFO - Processing participant 8.0... -2025-05-06 13:44:18,842 - INFO - Fitting SINDy model for participant 8.0 -2025-05-06 13:44:18,842 - WARNING - Error processing participant 8.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,842 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,842 - INFO - Processing participant 9.0... -2025-05-06 13:44:18,842 - INFO - Fitting SINDy model for participant 9.0 -2025-05-06 13:44:18,842 - WARNING - Error processing participant 9.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,842 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,842 - INFO - Processing participant 10.0... -2025-05-06 13:44:18,842 - INFO - Fitting SINDy model for participant 10.0 -2025-05-06 13:44:18,842 - WARNING - Error processing participant 10.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,843 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,843 - INFO - Processing participant 11.0... -2025-05-06 13:44:18,843 - INFO - Fitting SINDy model for participant 11.0 -2025-05-06 13:44:18,843 - WARNING - Error processing participant 11.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,843 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,843 - INFO - Processing participant 12.0... -2025-05-06 13:44:18,843 - INFO - Fitting SINDy model for participant 12.0 -2025-05-06 13:44:18,843 - WARNING - Error processing participant 12.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,843 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,843 - INFO - Processing participant 13.0... -2025-05-06 13:44:18,843 - INFO - Fitting SINDy model for participant 13.0 -2025-05-06 13:44:18,843 - WARNING - Error processing participant 13.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,843 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,843 - INFO - Processing participant 14.0... -2025-05-06 13:44:18,843 - INFO - Fitting SINDy model for participant 14.0 -2025-05-06 13:44:18,843 - WARNING - Error processing participant 14.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,843 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,843 - INFO - Processing participant 15.0... -2025-05-06 13:44:18,843 - INFO - Fitting SINDy model for participant 15.0 -2025-05-06 13:44:18,843 - WARNING - Error processing participant 15.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,844 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,844 - INFO - Processing participant 16.0... -2025-05-06 13:44:18,844 - INFO - Fitting SINDy model for participant 16.0 -2025-05-06 13:44:18,844 - WARNING - Error processing participant 16.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,844 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,844 - INFO - Processing participant 17.0... -2025-05-06 13:44:18,844 - INFO - Fitting SINDy model for participant 17.0 -2025-05-06 13:44:18,844 - WARNING - Error processing participant 17.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,844 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,844 - INFO - Processing participant 18.0... -2025-05-06 13:44:18,844 - INFO - Fitting SINDy model for participant 18.0 -2025-05-06 13:44:18,844 - WARNING - Error processing participant 18.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,844 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,844 - INFO - Processing participant 19.0... -2025-05-06 13:44:18,844 - INFO - Fitting SINDy model for participant 19.0 -2025-05-06 13:44:18,844 - WARNING - Error processing participant 19.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,844 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,844 - INFO - Processing participant 20.0... -2025-05-06 13:44:18,844 - INFO - Fitting SINDy model for participant 20.0 -2025-05-06 13:44:18,844 - WARNING - Error processing participant 20.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,845 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,845 - INFO - Processing participant 21.0... -2025-05-06 13:44:18,845 - INFO - Fitting SINDy model for participant 21.0 -2025-05-06 13:44:18,845 - WARNING - Error processing participant 21.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,845 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,845 - INFO - Processing participant 22.0... -2025-05-06 13:44:18,845 - INFO - Fitting SINDy model for participant 22.0 -2025-05-06 13:44:18,845 - WARNING - Error processing participant 22.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,845 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,845 - INFO - Processing participant 23.0... -2025-05-06 13:44:18,845 - INFO - Fitting SINDy model for participant 23.0 -2025-05-06 13:44:18,845 - WARNING - Error processing participant 23.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,845 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,845 - INFO - Processing participant 24.0... -2025-05-06 13:44:18,845 - INFO - Fitting SINDy model for participant 24.0 -2025-05-06 13:44:18,845 - WARNING - Error processing participant 24.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,845 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,845 - INFO - Processing participant 25.0... -2025-05-06 13:44:18,845 - INFO - Fitting SINDy model for participant 25.0 -2025-05-06 13:44:18,845 - WARNING - Error processing participant 25.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,845 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,845 - INFO - Processing participant 26.0... -2025-05-06 13:44:18,846 - INFO - Fitting SINDy model for participant 26.0 -2025-05-06 13:44:18,846 - WARNING - Error processing participant 26.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,846 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,846 - INFO - Processing participant 27.0... -2025-05-06 13:44:18,846 - INFO - Fitting SINDy model for participant 27.0 -2025-05-06 13:44:18,846 - WARNING - Error processing participant 27.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,846 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,846 - INFO - Processing participant 28.0... -2025-05-06 13:44:18,846 - INFO - Fitting SINDy model for participant 28.0 -2025-05-06 13:44:18,846 - WARNING - Error processing participant 28.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,846 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,846 - INFO - Processing participant 29.0... -2025-05-06 13:44:18,846 - INFO - Fitting SINDy model for participant 29.0 -2025-05-06 13:44:18,846 - WARNING - Error processing participant 29.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,846 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,846 - INFO - Processing participant 30.0... -2025-05-06 13:44:18,846 - INFO - Fitting SINDy model for participant 30.0 -2025-05-06 13:44:18,846 - WARNING - Error processing participant 30.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,846 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,846 - INFO - Processing participant 31.0... -2025-05-06 13:44:18,846 - INFO - Fitting SINDy model for participant 31.0 -2025-05-06 13:44:18,846 - WARNING - Error processing participant 31.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,847 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,847 - INFO - Processing participant 32.0... -2025-05-06 13:44:18,847 - INFO - Fitting SINDy model for participant 32.0 -2025-05-06 13:44:18,847 - WARNING - Error processing participant 32.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,847 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,847 - INFO - Processing participant 33.0... -2025-05-06 13:44:18,847 - INFO - Fitting SINDy model for participant 33.0 -2025-05-06 13:44:18,847 - WARNING - Error processing participant 33.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,847 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,847 - INFO - Processing participant 34.0... -2025-05-06 13:44:18,847 - INFO - Fitting SINDy model for participant 34.0 -2025-05-06 13:44:18,847 - WARNING - Error processing participant 34.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,847 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,847 - INFO - Processing participant 35.0... -2025-05-06 13:44:18,847 - INFO - Fitting SINDy model for participant 35.0 -2025-05-06 13:44:18,847 - WARNING - Error processing participant 35.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,847 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,847 - INFO - Processing participant 36.0... -2025-05-06 13:44:18,847 - INFO - Fitting SINDy model for participant 36.0 -2025-05-06 13:44:18,847 - WARNING - Error processing participant 36.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,848 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,848 - INFO - Processing participant 37.0... -2025-05-06 13:44:18,848 - INFO - Fitting SINDy model for participant 37.0 -2025-05-06 13:44:18,848 - WARNING - Error processing participant 37.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,848 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,848 - INFO - Processing participant 38.0... -2025-05-06 13:44:18,848 - INFO - Fitting SINDy model for participant 38.0 -2025-05-06 13:44:18,848 - WARNING - Error processing participant 38.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,848 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,848 - INFO - Processing participant 39.0... -2025-05-06 13:44:18,848 - INFO - Fitting SINDy model for participant 39.0 -2025-05-06 13:44:18,848 - WARNING - Error processing participant 39.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,848 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,848 - INFO - Processing participant 40.0... -2025-05-06 13:44:18,848 - INFO - Fitting SINDy model for participant 40.0 -2025-05-06 13:44:18,848 - WARNING - Error processing participant 40.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,848 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,848 - INFO - Processing participant 41.0... -2025-05-06 13:44:18,848 - INFO - Fitting SINDy model for participant 41.0 -2025-05-06 13:44:18,848 - WARNING - Error processing participant 41.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,848 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,848 - INFO - Processing participant 42.0... -2025-05-06 13:44:18,849 - INFO - Fitting SINDy model for participant 42.0 -2025-05-06 13:44:18,849 - WARNING - Error processing participant 42.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,849 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,849 - INFO - Processing participant 43.0... -2025-05-06 13:44:18,849 - INFO - Fitting SINDy model for participant 43.0 -2025-05-06 13:44:18,849 - WARNING - Error processing participant 43.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,849 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,849 - INFO - Processing participant 44.0... -2025-05-06 13:44:18,849 - INFO - Fitting SINDy model for participant 44.0 -2025-05-06 13:44:18,849 - WARNING - Error processing participant 44.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,849 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,849 - INFO - Processing participant 45.0... -2025-05-06 13:44:18,849 - INFO - Fitting SINDy model for participant 45.0 -2025-05-06 13:44:18,849 - WARNING - Error processing participant 45.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,849 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,849 - INFO - Processing participant 46.0... -2025-05-06 13:44:18,849 - INFO - Fitting SINDy model for participant 46.0 -2025-05-06 13:44:18,849 - WARNING - Error processing participant 46.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,849 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,849 - INFO - Processing participant 47.0... -2025-05-06 13:44:18,850 - INFO - Fitting SINDy model for participant 47.0 -2025-05-06 13:44:18,850 - WARNING - Error processing participant 47.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,850 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,850 - INFO - Processing participant 48.0... -2025-05-06 13:44:18,850 - INFO - Fitting SINDy model for participant 48.0 -2025-05-06 13:44:18,850 - WARNING - Error processing participant 48.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,850 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,850 - INFO - Processing participant 49.0... -2025-05-06 13:44:18,850 - INFO - Fitting SINDy model for participant 49.0 -2025-05-06 13:44:18,850 - WARNING - Error processing participant 49.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,850 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,850 - INFO - Processing participant 50.0... -2025-05-06 13:44:18,850 - INFO - Fitting SINDy model for participant 50.0 -2025-05-06 13:44:18,850 - WARNING - Error processing participant 50.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,850 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,850 - INFO - Processing participant 51.0... -2025-05-06 13:44:18,850 - INFO - Fitting SINDy model for participant 51.0 -2025-05-06 13:44:18,850 - WARNING - Error processing participant 51.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,850 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,850 - INFO - Processing participant 52.0... -2025-05-06 13:44:18,851 - INFO - Fitting SINDy model for participant 52.0 -2025-05-06 13:44:18,851 - WARNING - Error processing participant 52.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,851 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,851 - INFO - Processing participant 53.0... -2025-05-06 13:44:18,851 - INFO - Fitting SINDy model for participant 53.0 -2025-05-06 13:44:18,851 - WARNING - Error processing participant 53.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,851 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,851 - INFO - Processing participant 54.0... -2025-05-06 13:44:18,851 - INFO - Fitting SINDy model for participant 54.0 -2025-05-06 13:44:18,851 - WARNING - Error processing participant 54.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,851 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,851 - INFO - Processing participant 55.0... -2025-05-06 13:44:18,851 - INFO - Fitting SINDy model for participant 55.0 -2025-05-06 13:44:18,851 - WARNING - Error processing participant 55.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,851 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,851 - INFO - Processing participant 56.0... -2025-05-06 13:44:18,851 - INFO - Fitting SINDy model for participant 56.0 -2025-05-06 13:44:18,851 - WARNING - Error processing participant 56.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,851 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,851 - INFO - Processing participant 57.0... -2025-05-06 13:44:18,852 - INFO - Fitting SINDy model for participant 57.0 -2025-05-06 13:44:18,852 - WARNING - Error processing participant 57.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,852 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,852 - INFO - Processing participant 58.0... -2025-05-06 13:44:18,852 - INFO - Fitting SINDy model for participant 58.0 -2025-05-06 13:44:18,852 - WARNING - Error processing participant 58.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,852 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,852 - INFO - Processing participant 59.0... -2025-05-06 13:44:18,852 - INFO - Fitting SINDy model for participant 59.0 -2025-05-06 13:44:18,852 - WARNING - Error processing participant 59.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,852 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,852 - INFO - Processing participant 60.0... -2025-05-06 13:44:18,852 - INFO - Fitting SINDy model for participant 60.0 -2025-05-06 13:44:18,852 - WARNING - Error processing participant 60.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,852 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,852 - INFO - Processing participant 61.0... -2025-05-06 13:44:18,852 - INFO - Fitting SINDy model for participant 61.0 -2025-05-06 13:44:18,852 - WARNING - Error processing participant 61.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,853 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,853 - INFO - Processing participant 62.0... -2025-05-06 13:44:18,853 - INFO - Fitting SINDy model for participant 62.0 -2025-05-06 13:44:18,853 - WARNING - Error processing participant 62.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,853 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,853 - INFO - Processing participant 63.0... -2025-05-06 13:44:18,853 - INFO - Fitting SINDy model for participant 63.0 -2025-05-06 13:44:18,853 - WARNING - Error processing participant 63.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,853 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,853 - INFO - Processing participant 64.0... -2025-05-06 13:44:18,853 - INFO - Fitting SINDy model for participant 64.0 -2025-05-06 13:44:18,853 - WARNING - Error processing participant 64.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,853 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,853 - INFO - Processing participant 65.0... -2025-05-06 13:44:18,853 - INFO - Fitting SINDy model for participant 65.0 -2025-05-06 13:44:18,853 - WARNING - Error processing participant 65.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,853 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,853 - INFO - Processing participant 66.0... -2025-05-06 13:44:18,853 - INFO - Fitting SINDy model for participant 66.0 -2025-05-06 13:44:18,853 - WARNING - Error processing participant 66.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,854 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,854 - INFO - Processing participant 67.0... -2025-05-06 13:44:18,854 - INFO - Fitting SINDy model for participant 67.0 -2025-05-06 13:44:18,854 - WARNING - Error processing participant 67.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,854 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,854 - INFO - Processing participant 68.0... -2025-05-06 13:44:18,854 - INFO - Fitting SINDy model for participant 68.0 -2025-05-06 13:44:18,854 - WARNING - Error processing participant 68.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,854 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,854 - INFO - Processing participant 69.0... -2025-05-06 13:44:18,854 - INFO - Fitting SINDy model for participant 69.0 -2025-05-06 13:44:18,854 - WARNING - Error processing participant 69.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,854 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,854 - INFO - Processing participant 70.0... -2025-05-06 13:44:18,854 - INFO - Fitting SINDy model for participant 70.0 -2025-05-06 13:44:18,854 - WARNING - Error processing participant 70.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,854 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,854 - INFO - Processing participant 71.0... -2025-05-06 13:44:18,855 - INFO - Fitting SINDy model for participant 71.0 -2025-05-06 13:44:18,855 - WARNING - Error processing participant 71.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,855 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,855 - INFO - Processing participant 72.0... -2025-05-06 13:44:18,855 - INFO - Fitting SINDy model for participant 72.0 -2025-05-06 13:44:18,855 - WARNING - Error processing participant 72.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,855 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,855 - INFO - Processing participant 73.0... -2025-05-06 13:44:18,855 - INFO - Fitting SINDy model for participant 73.0 -2025-05-06 13:44:18,855 - WARNING - Error processing participant 73.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,855 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,855 - INFO - Processing participant 74.0... -2025-05-06 13:44:18,855 - INFO - Fitting SINDy model for participant 74.0 -2025-05-06 13:44:18,855 - WARNING - Error processing participant 74.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,855 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,855 - INFO - Processing participant 75.0... -2025-05-06 13:44:18,855 - INFO - Fitting SINDy model for participant 75.0 -2025-05-06 13:44:18,855 - WARNING - Error processing participant 75.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,855 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,855 - INFO - Processing participant 76.0... -2025-05-06 13:44:18,856 - INFO - Fitting SINDy model for participant 76.0 -2025-05-06 13:44:18,856 - WARNING - Error processing participant 76.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,856 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,856 - INFO - Processing participant 77.0... -2025-05-06 13:44:18,856 - INFO - Fitting SINDy model for participant 77.0 -2025-05-06 13:44:18,856 - WARNING - Error processing participant 77.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,856 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,856 - INFO - Processing participant 78.0... -2025-05-06 13:44:18,856 - INFO - Fitting SINDy model for participant 78.0 -2025-05-06 13:44:18,856 - WARNING - Error processing participant 78.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,856 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,856 - INFO - Processing participant 79.0... -2025-05-06 13:44:18,856 - INFO - Fitting SINDy model for participant 79.0 -2025-05-06 13:44:18,856 - WARNING - Error processing participant 79.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,856 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,856 - INFO - Processing participant 80.0... -2025-05-06 13:44:18,856 - INFO - Fitting SINDy model for participant 80.0 -2025-05-06 13:44:18,856 - WARNING - Error processing participant 80.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,856 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,856 - INFO - Processing participant 81.0... -2025-05-06 13:44:18,857 - INFO - Fitting SINDy model for participant 81.0 -2025-05-06 13:44:18,857 - WARNING - Error processing participant 81.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,857 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,857 - INFO - Processing participant 82.0... -2025-05-06 13:44:18,857 - INFO - Fitting SINDy model for participant 82.0 -2025-05-06 13:44:18,857 - WARNING - Error processing participant 82.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,857 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,857 - INFO - Processing participant 83.0... -2025-05-06 13:44:18,857 - INFO - Fitting SINDy model for participant 83.0 -2025-05-06 13:44:18,857 - WARNING - Error processing participant 83.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,857 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,857 - INFO - Processing participant 84.0... -2025-05-06 13:44:18,857 - INFO - Fitting SINDy model for participant 84.0 -2025-05-06 13:44:18,857 - WARNING - Error processing participant 84.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,857 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,857 - INFO - Processing participant 85.0... -2025-05-06 13:44:18,857 - INFO - Fitting SINDy model for participant 85.0 -2025-05-06 13:44:18,857 - WARNING - Error processing participant 85.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,858 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,858 - INFO - Processing participant 86.0... -2025-05-06 13:44:18,858 - INFO - Fitting SINDy model for participant 86.0 -2025-05-06 13:44:18,858 - WARNING - Error processing participant 86.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,858 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,858 - INFO - Processing participant 87.0... -2025-05-06 13:44:18,858 - INFO - Fitting SINDy model for participant 87.0 -2025-05-06 13:44:18,858 - WARNING - Error processing participant 87.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,858 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,858 - INFO - Processing participant 88.0... -2025-05-06 13:44:18,858 - INFO - Fitting SINDy model for participant 88.0 -2025-05-06 13:44:18,858 - WARNING - Error processing participant 88.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,858 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,858 - INFO - Processing participant 89.0... -2025-05-06 13:44:18,858 - INFO - Fitting SINDy model for participant 89.0 -2025-05-06 13:44:18,858 - WARNING - Error processing participant 89.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,858 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,858 - INFO - Processing participant 90.0... -2025-05-06 13:44:18,858 - INFO - Fitting SINDy model for participant 90.0 -2025-05-06 13:44:18,858 - WARNING - Error processing participant 90.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,859 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,859 - INFO - Processing participant 91.0... -2025-05-06 13:44:18,859 - INFO - Fitting SINDy model for participant 91.0 -2025-05-06 13:44:18,859 - WARNING - Error processing participant 91.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,859 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,859 - INFO - Processing participant 92.0... -2025-05-06 13:44:18,859 - INFO - Fitting SINDy model for participant 92.0 -2025-05-06 13:44:18,859 - WARNING - Error processing participant 92.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,859 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,859 - INFO - Processing participant 93.0... -2025-05-06 13:44:18,859 - INFO - Fitting SINDy model for participant 93.0 -2025-05-06 13:44:18,859 - WARNING - Error processing participant 93.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,859 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,859 - INFO - Processing participant 94.0... -2025-05-06 13:44:18,859 - INFO - Fitting SINDy model for participant 94.0 -2025-05-06 13:44:18,859 - WARNING - Error processing participant 94.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,859 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,859 - INFO - Processing participant 95.0... -2025-05-06 13:44:18,859 - INFO - Fitting SINDy model for participant 95.0 -2025-05-06 13:44:18,859 - WARNING - Error processing participant 95.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,860 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,860 - INFO - Processing participant 96.0... -2025-05-06 13:44:18,860 - INFO - Fitting SINDy model for participant 96.0 -2025-05-06 13:44:18,860 - WARNING - Error processing participant 96.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,860 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,860 - INFO - Processing participant 97.0... -2025-05-06 13:44:18,860 - INFO - Fitting SINDy model for participant 97.0 -2025-05-06 13:44:18,860 - WARNING - Error processing participant 97.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,860 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,860 - INFO - Processing participant 98.0... -2025-05-06 13:44:18,860 - INFO - Fitting SINDy model for participant 98.0 -2025-05-06 13:44:18,860 - WARNING - Error processing participant 98.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,860 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,860 - INFO - Processing participant 99.0... -2025-05-06 13:44:18,860 - INFO - Fitting SINDy model for participant 99.0 -2025-05-06 13:44:18,860 - WARNING - Error processing participant 99.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,860 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,860 - INFO - Processing participant 100.0... -2025-05-06 13:44:18,861 - INFO - Fitting SINDy model for participant 100.0 -2025-05-06 13:44:18,861 - WARNING - Error processing participant 100.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,861 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,861 - INFO - Processing participant 101.0... -2025-05-06 13:44:18,861 - INFO - Fitting SINDy model for participant 101.0 -2025-05-06 13:44:18,861 - WARNING - Error processing participant 101.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,861 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,861 - INFO - Processing participant 102.0... -2025-05-06 13:44:18,861 - INFO - Fitting SINDy model for participant 102.0 -2025-05-06 13:44:18,861 - WARNING - Error processing participant 102.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,861 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,861 - INFO - Processing participant 103.0... -2025-05-06 13:44:18,861 - INFO - Fitting SINDy model for participant 103.0 -2025-05-06 13:44:18,861 - WARNING - Error processing participant 103.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,861 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,861 - INFO - Processing participant 104.0... -2025-05-06 13:44:18,861 - INFO - Fitting SINDy model for participant 104.0 -2025-05-06 13:44:18,861 - WARNING - Error processing participant 104.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,861 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,861 - INFO - Processing participant 105.0... -2025-05-06 13:44:18,862 - INFO - Fitting SINDy model for participant 105.0 -2025-05-06 13:44:18,862 - WARNING - Error processing participant 105.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,862 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,862 - INFO - Processing participant 106.0... -2025-05-06 13:44:18,862 - INFO - Fitting SINDy model for participant 106.0 -2025-05-06 13:44:18,862 - WARNING - Error processing participant 106.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,862 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,862 - INFO - Processing participant 107.0... -2025-05-06 13:44:18,862 - INFO - Fitting SINDy model for participant 107.0 -2025-05-06 13:44:18,862 - WARNING - Error processing participant 107.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,862 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,862 - INFO - Processing participant 108.0... -2025-05-06 13:44:18,862 - INFO - Fitting SINDy model for participant 108.0 -2025-05-06 13:44:18,862 - WARNING - Error processing participant 108.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,862 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,862 - INFO - Processing participant 109.0... -2025-05-06 13:44:18,862 - INFO - Fitting SINDy model for participant 109.0 -2025-05-06 13:44:18,862 - WARNING - Error processing participant 109.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,863 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,863 - INFO - Processing participant 110.0... -2025-05-06 13:44:18,863 - INFO - Fitting SINDy model for participant 110.0 -2025-05-06 13:44:18,863 - WARNING - Error processing participant 110.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,863 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,863 - INFO - Processing participant 111.0... -2025-05-06 13:44:18,863 - INFO - Fitting SINDy model for participant 111.0 -2025-05-06 13:44:18,863 - WARNING - Error processing participant 111.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,863 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,863 - INFO - Processing participant 112.0... -2025-05-06 13:44:18,863 - INFO - Fitting SINDy model for participant 112.0 -2025-05-06 13:44:18,863 - WARNING - Error processing participant 112.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,863 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,863 - INFO - Processing participant 113.0... -2025-05-06 13:44:18,863 - INFO - Fitting SINDy model for participant 113.0 -2025-05-06 13:44:18,863 - WARNING - Error processing participant 113.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,863 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,863 - INFO - Processing participant 114.0... -2025-05-06 13:44:18,863 - INFO - Fitting SINDy model for participant 114.0 -2025-05-06 13:44:18,863 - WARNING - Error processing participant 114.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,863 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,863 - INFO - Processing participant 115.0... -2025-05-06 13:44:18,864 - INFO - Fitting SINDy model for participant 115.0 -2025-05-06 13:44:18,864 - WARNING - Error processing participant 115.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,864 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,864 - INFO - Processing participant 116.0... -2025-05-06 13:44:18,864 - INFO - Fitting SINDy model for participant 116.0 -2025-05-06 13:44:18,864 - WARNING - Error processing participant 116.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,864 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,864 - INFO - Processing participant 117.0... -2025-05-06 13:44:18,864 - INFO - Fitting SINDy model for participant 117.0 -2025-05-06 13:44:18,864 - WARNING - Error processing participant 117.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,864 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,864 - INFO - Processing participant 118.0... -2025-05-06 13:44:18,864 - INFO - Fitting SINDy model for participant 118.0 -2025-05-06 13:44:18,864 - WARNING - Error processing participant 118.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,864 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,864 - INFO - Processing participant 119.0... -2025-05-06 13:44:18,864 - INFO - Fitting SINDy model for participant 119.0 -2025-05-06 13:44:18,864 - WARNING - Error processing participant 119.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,864 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,865 - INFO - Processing participant 120.0... -2025-05-06 13:44:18,865 - INFO - Fitting SINDy model for participant 120.0 -2025-05-06 13:44:18,865 - WARNING - Error processing participant 120.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,865 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,865 - INFO - Processing participant 121.0... -2025-05-06 13:44:18,865 - INFO - Fitting SINDy model for participant 121.0 -2025-05-06 13:44:18,865 - WARNING - Error processing participant 121.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,865 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,865 - INFO - Processing participant 122.0... -2025-05-06 13:44:18,865 - INFO - Fitting SINDy model for participant 122.0 -2025-05-06 13:44:18,865 - WARNING - Error processing participant 122.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,865 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,865 - INFO - Processing participant 123.0... -2025-05-06 13:44:18,865 - INFO - Fitting SINDy model for participant 123.0 -2025-05-06 13:44:18,865 - WARNING - Error processing participant 123.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,865 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,865 - INFO - Processing participant 124.0... -2025-05-06 13:44:18,865 - INFO - Fitting SINDy model for participant 124.0 -2025-05-06 13:44:18,865 - WARNING - Error processing participant 124.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,865 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,866 - INFO - Processing participant 125.0... -2025-05-06 13:44:18,866 - INFO - Fitting SINDy model for participant 125.0 -2025-05-06 13:44:18,866 - WARNING - Error processing participant 125.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,866 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,866 - INFO - Processing participant 126.0... -2025-05-06 13:44:18,866 - INFO - Fitting SINDy model for participant 126.0 -2025-05-06 13:44:18,866 - WARNING - Error processing participant 126.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,866 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,866 - INFO - Processing participant 127.0... -2025-05-06 13:44:18,866 - INFO - Fitting SINDy model for participant 127.0 -2025-05-06 13:44:18,866 - WARNING - Error processing participant 127.0: 'sindy_optimizer_alpha' -2025-05-06 13:44:18,866 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 351, in evaluate_with_sindy - optimizer_alpha=best_params['sindy_optimizer_alpha'], - ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ -KeyError: 'sindy_optimizer_alpha' - -2025-05-06 13:44:18,866 - INFO - Number of participants with valid BIC metrics: 0/128 -2025-05-06 13:44:18,866 - INFO - Average SINDy BIC: nan -2025-05-06 13:44:18,866 - INFO - Average SINDy LL: nan -2025-05-06 13:44:18,867 - INFO - Completed processing dataset: data_128p_0.csv -2025-05-06 13:44:19,187 - WARNING - No participant-level metrics found for violin plots -2025-05-06 13:45:56,144 - INFO - ================================================================================ -2025-05-06 13:45:56,144 - INFO - EXPERIMENT CONFIG -2025-05-06 13:45:56,144 - INFO - ================================================================================ -2025-05-06 13:45:56,144 - INFO - Found 1 data files: ['data_128p_0.csv'] -2025-05-06 13:45:56,144 - INFO - Processing dataset: data_128p_0.csv -2025-05-06 13:45:56,144 - INFO - Loading dataset from data/optuna/data_128p_0.csv -2025-05-06 13:45:56,183 - INFO - Number of participants: 128 -2025-05-06 13:45:56,190 - INFO - Participant 0 (ID=0.0): α_reward=0.74, α_penalty=0.97 -2025-05-06 13:45:56,196 - INFO - Participant 1 (ID=1.0): α_reward=0.99, α_penalty=0.02 -2025-05-06 13:45:56,202 - INFO - Participant 2 (ID=2.0): α_reward=0.77, α_penalty=0.46 -2025-05-06 13:45:56,208 - INFO - Participant 3 (ID=3.0): α_reward=0.96, α_penalty=0.60 -2025-05-06 13:45:56,214 - INFO - Participant 4 (ID=4.0): α_reward=0.21, α_penalty=0.21 -2025-05-06 13:45:56,219 - INFO - Participant 5 (ID=5.0): α_reward=0.07, α_penalty=0.51 -2025-05-06 13:45:56,227 - INFO - Participant 6 (ID=6.0): α_reward=0.23, α_penalty=0.60 -2025-05-06 13:45:56,233 - INFO - Participant 7 (ID=7.0): α_reward=0.91, α_penalty=0.80 -2025-05-06 13:45:56,240 - INFO - Participant 8 (ID=8.0): α_reward=0.99, α_penalty=0.97 -2025-05-06 13:45:56,246 - INFO - Participant 9 (ID=9.0): α_reward=0.67, α_penalty=0.87 -2025-05-06 13:45:56,252 - INFO - Participant 10 (ID=10.0): α_reward=0.08, α_penalty=0.77 -2025-05-06 13:45:56,258 - INFO - Participant 11 (ID=11.0): α_reward=0.87, α_penalty=0.31 -2025-05-06 13:45:56,264 - INFO - Participant 12 (ID=12.0): α_reward=0.58, α_penalty=0.19 -2025-05-06 13:45:56,269 - INFO - Participant 13 (ID=13.0): α_reward=0.48, α_penalty=0.25 -2025-05-06 13:45:56,275 - INFO - Participant 14 (ID=14.0): α_reward=0.34, α_penalty=0.83 -2025-05-06 13:45:56,281 - INFO - Participant 15 (ID=15.0): α_reward=0.56, α_penalty=0.80 -2025-05-06 13:45:56,287 - INFO - Participant 16 (ID=16.0): α_reward=0.47, α_penalty=0.29 -2025-05-06 13:45:56,292 - INFO - Participant 17 (ID=17.0): α_reward=0.77, α_penalty=0.94 -2025-05-06 13:45:56,298 - INFO - Participant 18 (ID=18.0): α_reward=0.88, α_penalty=0.01 -2025-05-06 13:45:56,304 - INFO - Participant 19 (ID=19.0): α_reward=0.98, α_penalty=0.11 -2025-05-06 13:45:56,310 - INFO - Participant 20 (ID=20.0): α_reward=0.02, α_penalty=0.85 -2025-05-06 13:45:56,316 - INFO - Participant 21 (ID=21.0): α_reward=0.46, α_penalty=0.85 -2025-05-06 13:45:56,322 - INFO - Participant 22 (ID=22.0): α_reward=0.69, α_penalty=0.43 -2025-05-06 13:45:56,328 - INFO - Participant 23 (ID=23.0): α_reward=0.15, α_penalty=0.95 -2025-05-06 13:45:56,334 - INFO - Participant 24 (ID=24.0): α_reward=0.25, α_penalty=0.36 -2025-05-06 13:45:56,340 - INFO - Participant 25 (ID=25.0): α_reward=0.75, α_penalty=0.11 -2025-05-06 13:45:56,346 - INFO - Participant 26 (ID=26.0): α_reward=0.46, α_penalty=0.81 -2025-05-06 13:45:56,351 - INFO - Participant 27 (ID=27.0): α_reward=0.36, α_penalty=0.63 -2025-05-06 13:45:56,358 - INFO - Participant 28 (ID=28.0): α_reward=0.49, α_penalty=0.00 -2025-05-06 13:45:56,364 - INFO - Participant 29 (ID=29.0): α_reward=0.20, α_penalty=0.98 -2025-05-06 13:45:56,370 - INFO - Participant 30 (ID=30.0): α_reward=0.29, α_penalty=0.64 -2025-05-06 13:45:56,376 - INFO - Participant 31 (ID=31.0): α_reward=0.66, α_penalty=0.64 -2025-05-06 13:45:56,382 - INFO - Participant 32 (ID=32.0): α_reward=0.21, α_penalty=0.41 -2025-05-06 13:45:56,387 - INFO - Participant 33 (ID=33.0): α_reward=0.49, α_penalty=0.63 -2025-05-06 13:45:56,393 - INFO - Participant 34 (ID=34.0): α_reward=0.38, α_penalty=0.08 -2025-05-06 13:45:56,399 - INFO - Participant 35 (ID=35.0): α_reward=0.33, α_penalty=0.29 -2025-05-06 13:45:56,405 - INFO - Participant 36 (ID=36.0): α_reward=0.53, α_penalty=0.61 -2025-05-06 13:45:56,411 - INFO - Participant 37 (ID=37.0): α_reward=0.65, α_penalty=0.34 -2025-05-06 13:45:56,417 - INFO - Participant 38 (ID=38.0): α_reward=0.29, α_penalty=0.13 -2025-05-06 13:45:56,423 - INFO - Participant 39 (ID=39.0): α_reward=0.31, α_penalty=0.25 -2025-05-06 13:45:56,429 - INFO - Participant 40 (ID=40.0): α_reward=0.77, α_penalty=0.04 -2025-05-06 13:45:56,435 - INFO - Participant 41 (ID=41.0): α_reward=0.23, α_penalty=0.89 -2025-05-06 13:45:56,441 - INFO - Participant 42 (ID=42.0): α_reward=0.63, α_penalty=0.60 -2025-05-06 13:45:56,447 - INFO - Participant 43 (ID=43.0): α_reward=0.48, α_penalty=0.52 -2025-05-06 13:45:56,453 - INFO - Participant 44 (ID=44.0): α_reward=0.92, α_penalty=0.22 -2025-05-06 13:45:56,459 - INFO - Participant 45 (ID=45.0): α_reward=0.52, α_penalty=0.89 -2025-05-06 13:45:56,465 - INFO - Participant 46 (ID=46.0): α_reward=0.42, α_penalty=0.83 -2025-05-06 13:45:56,470 - INFO - Participant 47 (ID=47.0): α_reward=0.68, α_penalty=0.69 -2025-05-06 13:45:56,476 - INFO - Participant 48 (ID=48.0): α_reward=0.95, α_penalty=0.22 -2025-05-06 13:45:56,482 - INFO - Participant 49 (ID=49.0): α_reward=0.13, α_penalty=0.48 -2025-05-06 13:45:56,488 - INFO - Participant 50 (ID=50.0): α_reward=0.87, α_penalty=0.85 -2025-05-06 13:45:56,494 - INFO - Participant 51 (ID=51.0): α_reward=0.47, α_penalty=0.07 -2025-05-06 13:45:56,500 - INFO - Participant 52 (ID=52.0): α_reward=0.56, α_penalty=0.42 -2025-05-06 13:45:56,505 - INFO - Participant 53 (ID=53.0): α_reward=0.53, α_penalty=0.18 -2025-05-06 13:45:56,511 - INFO - Participant 54 (ID=54.0): α_reward=0.87, α_penalty=0.73 -2025-05-06 13:45:56,517 - INFO - Participant 55 (ID=55.0): α_reward=0.21, α_penalty=0.47 -2025-05-06 13:45:56,523 - INFO - Participant 56 (ID=56.0): α_reward=0.65, α_penalty=0.09 -2025-05-06 13:45:56,529 - INFO - Participant 57 (ID=57.0): α_reward=0.72, α_penalty=0.88 -2025-05-06 13:45:56,535 - INFO - Participant 58 (ID=58.0): α_reward=0.61, α_penalty=0.38 -2025-05-06 13:45:56,541 - INFO - Participant 59 (ID=59.0): α_reward=0.92, α_penalty=0.91 -2025-05-06 13:45:56,546 - INFO - Participant 60 (ID=60.0): α_reward=0.22, α_penalty=0.97 -2025-05-06 13:45:56,552 - INFO - Participant 61 (ID=61.0): α_reward=0.41, α_penalty=0.53 -2025-05-06 13:45:56,558 - INFO - Participant 62 (ID=62.0): α_reward=0.92, α_penalty=0.99 -2025-05-06 13:45:56,564 - INFO - Participant 63 (ID=63.0): α_reward=0.22, α_penalty=0.99 -2025-05-06 13:45:56,570 - INFO - Participant 64 (ID=64.0): α_reward=0.84, α_penalty=0.96 -2025-05-06 13:45:56,576 - INFO - Participant 65 (ID=65.0): α_reward=0.55, α_penalty=0.19 -2025-05-06 13:45:56,581 - INFO - Participant 66 (ID=66.0): α_reward=0.34, α_penalty=0.07 -2025-05-06 13:45:56,587 - INFO - Participant 67 (ID=67.0): α_reward=0.62, α_penalty=0.45 -2025-05-06 13:45:56,593 - INFO - Participant 68 (ID=68.0): α_reward=0.47, α_penalty=0.19 -2025-05-06 13:45:56,599 - INFO - Participant 69 (ID=69.0): α_reward=0.81, α_penalty=0.36 -2025-05-06 13:45:56,604 - INFO - Participant 70 (ID=70.0): α_reward=0.73, α_penalty=0.87 -2025-05-06 13:45:56,610 - INFO - Participant 71 (ID=71.0): α_reward=0.10, α_penalty=0.57 -2025-05-06 13:45:56,616 - INFO - Participant 72 (ID=72.0): α_reward=0.78, α_penalty=0.50 -2025-05-06 13:45:56,622 - INFO - Participant 73 (ID=73.0): α_reward=0.82, α_penalty=0.70 -2025-05-06 13:45:56,628 - INFO - Participant 74 (ID=74.0): α_reward=0.00, α_penalty=0.98 -2025-05-06 13:45:56,634 - INFO - Participant 75 (ID=75.0): α_reward=0.42, α_penalty=0.26 -2025-05-06 13:45:56,640 - INFO - Participant 76 (ID=76.0): α_reward=0.83, α_penalty=0.39 -2025-05-06 13:45:56,646 - INFO - Participant 77 (ID=77.0): α_reward=0.75, α_penalty=0.18 -2025-05-06 13:45:56,651 - INFO - Participant 78 (ID=78.0): α_reward=0.97, α_penalty=0.44 -2025-05-06 13:45:56,657 - INFO - Participant 79 (ID=79.0): α_reward=0.45, α_penalty=0.57 -2025-05-06 13:45:56,663 - INFO - Participant 80 (ID=80.0): α_reward=0.63, α_penalty=0.78 -2025-05-06 13:45:56,669 - INFO - Participant 81 (ID=81.0): α_reward=0.29, α_penalty=0.24 -2025-05-06 13:45:56,675 - INFO - Participant 82 (ID=82.0): α_reward=0.71, α_penalty=0.15 -2025-05-06 13:45:56,681 - INFO - Participant 83 (ID=83.0): α_reward=0.71, α_penalty=0.66 -2025-05-06 13:45:56,687 - INFO - Participant 84 (ID=84.0): α_reward=0.97, α_penalty=0.79 -2025-05-06 13:45:56,692 - INFO - Participant 85 (ID=85.0): α_reward=1.00, α_penalty=0.95 -2025-05-06 13:45:56,698 - INFO - Participant 86 (ID=86.0): α_reward=0.56, α_penalty=0.08 -2025-05-06 13:45:56,704 - INFO - Participant 87 (ID=87.0): α_reward=0.59, α_penalty=0.83 -2025-05-06 13:45:56,709 - INFO - Participant 88 (ID=88.0): α_reward=0.32, α_penalty=0.60 -2025-05-06 13:45:56,715 - INFO - Participant 89 (ID=89.0): α_reward=0.20, α_penalty=0.84 -2025-05-06 13:45:56,721 - INFO - Participant 90 (ID=90.0): α_reward=0.34, α_penalty=1.00 -2025-05-06 13:45:56,727 - INFO - Participant 91 (ID=91.0): α_reward=0.19, α_penalty=0.99 -2025-05-06 13:45:56,733 - INFO - Participant 92 (ID=92.0): α_reward=0.20, α_penalty=0.91 -2025-05-06 13:45:56,739 - INFO - Participant 93 (ID=93.0): α_reward=0.31, α_penalty=0.21 -2025-05-06 13:45:56,745 - INFO - Participant 94 (ID=94.0): α_reward=0.58, α_penalty=0.41 -2025-05-06 13:45:56,751 - INFO - Participant 95 (ID=95.0): α_reward=0.80, α_penalty=0.54 -2025-05-06 13:45:56,756 - INFO - Participant 96 (ID=96.0): α_reward=0.74, α_penalty=0.80 -2025-05-06 13:45:56,762 - INFO - Participant 97 (ID=97.0): α_reward=0.59, α_penalty=0.16 -2025-05-06 13:45:56,768 - INFO - Participant 98 (ID=98.0): α_reward=0.54, α_penalty=0.17 -2025-05-06 13:45:56,774 - INFO - Participant 99 (ID=99.0): α_reward=0.17, α_penalty=0.16 -2025-05-06 13:45:56,780 - INFO - Participant 100 (ID=100.0): α_reward=0.79, α_penalty=0.40 -2025-05-06 13:45:56,786 - INFO - Participant 101 (ID=101.0): α_reward=0.32, α_penalty=0.05 -2025-05-06 13:45:56,792 - INFO - Participant 102 (ID=102.0): α_reward=0.87, α_penalty=0.81 -2025-05-06 13:45:56,797 - INFO - Participant 103 (ID=103.0): α_reward=0.90, α_penalty=0.11 -2025-05-06 13:45:56,803 - INFO - Participant 104 (ID=104.0): α_reward=0.44, α_penalty=0.12 -2025-05-06 13:45:56,809 - INFO - Participant 105 (ID=105.0): α_reward=0.59, α_penalty=0.50 -2025-05-06 13:45:56,815 - INFO - Participant 106 (ID=106.0): α_reward=0.84, α_penalty=0.50 -2025-05-06 13:45:56,820 - INFO - Participant 107 (ID=107.0): α_reward=0.48, α_penalty=0.54 -2025-05-06 13:45:56,826 - INFO - Participant 108 (ID=108.0): α_reward=0.56, α_penalty=0.75 -2025-05-06 13:45:56,832 - INFO - Participant 109 (ID=109.0): α_reward=0.53, α_penalty=0.11 -2025-05-06 13:45:56,838 - INFO - Participant 110 (ID=110.0): α_reward=0.52, α_penalty=0.40 -2025-05-06 13:45:56,844 - INFO - Participant 111 (ID=111.0): α_reward=0.61, α_penalty=0.74 -2025-05-06 13:45:56,849 - INFO - Participant 112 (ID=112.0): α_reward=0.64, α_penalty=0.56 -2025-05-06 13:45:56,855 - INFO - Participant 113 (ID=113.0): α_reward=0.44, α_penalty=0.40 -2025-05-06 13:45:56,861 - INFO - Participant 114 (ID=114.0): α_reward=0.74, α_penalty=0.91 -2025-05-06 13:45:56,867 - INFO - Participant 115 (ID=115.0): α_reward=0.09, α_penalty=0.27 -2025-05-06 13:45:56,873 - INFO - Participant 116 (ID=116.0): α_reward=0.99, α_penalty=0.92 -2025-05-06 13:45:56,879 - INFO - Participant 117 (ID=117.0): α_reward=0.90, α_penalty=0.87 -2025-05-06 13:45:56,885 - INFO - Participant 118 (ID=118.0): α_reward=0.21, α_penalty=0.27 -2025-05-06 13:45:56,891 - INFO - Participant 119 (ID=119.0): α_reward=0.71, α_penalty=0.69 -2025-05-06 13:45:56,896 - INFO - Participant 120 (ID=120.0): α_reward=0.43, α_penalty=0.05 -2025-05-06 13:45:56,902 - INFO - Participant 121 (ID=121.0): α_reward=0.11, α_penalty=0.27 -2025-05-06 13:45:56,908 - INFO - Participant 122 (ID=122.0): α_reward=0.80, α_penalty=0.43 -2025-05-06 13:45:56,914 - INFO - Participant 123 (ID=123.0): α_reward=0.74, α_penalty=0.44 -2025-05-06 13:45:56,919 - INFO - Participant 124 (ID=124.0): α_reward=0.18, α_penalty=0.36 -2025-05-06 13:45:56,925 - INFO - Participant 125 (ID=125.0): α_reward=0.86, α_penalty=0.09 -2025-05-06 13:45:56,931 - INFO - Participant 126 (ID=126.0): α_reward=0.05, α_penalty=0.52 -2025-05-06 13:45:56,937 - INFO - Participant 127 (ID=127.0): α_reward=0.41, α_penalty=0.26 -2025-05-06 13:45:56,937 - INFO - Participant 0 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 1 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 2 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 3 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 4 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 5 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 6 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 7 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 8 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 9 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 10 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 11 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 12 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 13 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 14 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 15 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 16 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 17 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 18 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 19 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 20 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 21 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 22 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 23 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 24 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 25 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 26 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 27 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 28 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 29 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 30 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 31 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,937 - INFO - Participant 32 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 33 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 34 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 35 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 36 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 37 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 38 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 39 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 40 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 41 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 42 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 43 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 44 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 45 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 46 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 47 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 48 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 49 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 50 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 51 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 52 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 53 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 54 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 55 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 56 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 57 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 58 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 59 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 60 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 61 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 62 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 63 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 64 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 65 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 66 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 67 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 68 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 69 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 70 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 71 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 72 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 73 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 74 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 75 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 76 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 77 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 78 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 79 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 80 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 81 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 82 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 83 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 84 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 85 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 86 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 87 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 88 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 89 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 90 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 91 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 92 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 93 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 94 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 95 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 96 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 97 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 98 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 99 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,938 - INFO - Participant 100 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 101 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 102 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 103 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 104 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 105 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 106 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 107 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 108 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 109 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 110 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 111 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 112 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 113 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 114 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 115 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 116 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 117 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 118 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 119 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 120 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 121 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 122 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 123 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 124 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 125 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 126 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Participant 127 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Combined xs shape after concatenation: torch.Size([128, 200, 5]) -2025-05-06 13:45:56,939 - INFO - Combined ys shape after concatenation: torch.Size([128, 200, 2]) -2025-05-06 13:45:56,939 - INFO - Combined dataset shape: X=torch.Size([128, 200, 5]), Y=torch.Size([128, 200, 2]) -2025-05-06 13:45:56,940 - INFO - Total unique participants: 128 -2025-05-06 13:45:56,940 - INFO - Train/test split ratio: 0.8/0.19999999999999996 of trials within each participant -2025-05-06 13:45:56,940 - INFO - Participant 0.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 1.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 2.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 3.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 4.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 5.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 6.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 7.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 8.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 9.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 10.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 11.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,940 - INFO - Participant 12.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 13.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 14.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 15.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 16.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 17.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 18.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 19.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 20.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 21.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 22.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 23.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 24.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 25.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 26.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 27.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 28.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 29.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 30.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 31.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 32.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,941 - INFO - Participant 33.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 34.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 35.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 36.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 37.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 38.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 39.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 40.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 41.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 42.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 43.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 44.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 45.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 46.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 47.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 48.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 49.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 50.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 51.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 52.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 53.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,942 - INFO - Participant 54.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 55.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 56.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 57.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 58.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 59.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 60.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 61.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 62.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 63.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 64.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 65.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 66.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 67.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 68.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 69.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 70.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 71.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 72.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 73.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 74.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 75.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 76.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,943 - INFO - Participant 77.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 78.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 79.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 80.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 81.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 82.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 83.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 84.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 85.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 86.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 87.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 88.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 89.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 90.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 91.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 92.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 93.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 94.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 95.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 96.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 97.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 98.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 99.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,944 - INFO - Participant 100.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 101.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 102.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 103.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 104.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 105.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 106.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 107.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 108.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 109.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 110.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 111.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 112.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 113.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 114.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 115.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 116.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 117.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 118.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 119.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 120.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,945 - INFO - Participant 121.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,946 - INFO - Participant 122.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,946 - INFO - Participant 123.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,946 - INFO - Participant 124.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,946 - INFO - Participant 125.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,946 - INFO - Participant 126.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,946 - INFO - Participant 127.0: 160 trials for training, 40 trials for validation -2025-05-06 13:45:56,946 - INFO - Train xs shape: torch.Size([128, 160, 5]) -2025-05-06 13:45:56,946 - INFO - Train ys shape: torch.Size([128, 160, 2]) -2025-05-06 13:45:56,946 - INFO - Validation xs shape: torch.Size([128, 40, 5]) -2025-05-06 13:45:56,946 - INFO - Validation ys shape: torch.Size([128, 40, 2]) -2025-05-06 13:45:56,946 - INFO - Train dataset: torch.Size([128, 160, 5]), Validation dataset: torch.Size([128, 40, 5]) -2025-05-06 13:45:56,946 - INFO - Starting hyperparameter optimization... -2025-05-06 13:45:56,947 - INFO - Trial 0: l1_weight_decay=0.000002, l2_weight_decay=0.000001 -2025-05-06 13:46:04,507 - INFO - Trial 0: RNN Train Loss: 0.5222022; SPICE Train Loss: 2.994627576656261 -2025-05-06 13:46:04,535 - INFO - Trial 0: Average Validation Loss: 3.4181, Eval count: 40 -2025-05-06 13:46:04,536 - INFO - Best hyperparameters: {'l1_weight_decay': 1.7116367690718478e-06, 'l2_weight_decay': 1.4102172114502843e-06} -2025-05-06 13:46:04,536 - INFO - Best validation loss: 3.4181 -2025-05-06 13:46:09,550 - INFO - Final RNN training loss: 0.6296792 -2025-05-06 13:46:09,551 - INFO - Evaluating with SINDy - fitting separate models for each participant's validation trials -2025-05-06 13:46:09,551 - INFO - Processing participant 0.0... -2025-05-06 13:46:09,551 - INFO - Fitting SINDy model for participant 0.0 -2025-05-06 13:46:10,669 - WARNING - Error processing participant 0.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:10,669 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:10,669 - INFO - Processing participant 1.0... -2025-05-06 13:46:10,670 - INFO - Fitting SINDy model for participant 1.0 -2025-05-06 13:46:11,754 - WARNING - Error processing participant 1.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:11,754 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:11,755 - INFO - Processing participant 2.0... -2025-05-06 13:46:11,755 - INFO - Fitting SINDy model for participant 2.0 -2025-05-06 13:46:12,770 - WARNING - Error processing participant 2.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:12,771 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:12,771 - INFO - Processing participant 3.0... -2025-05-06 13:46:12,771 - INFO - Fitting SINDy model for participant 3.0 -2025-05-06 13:46:13,803 - WARNING - Error processing participant 3.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:13,803 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:13,803 - INFO - Processing participant 4.0... -2025-05-06 13:46:13,803 - INFO - Fitting SINDy model for participant 4.0 -2025-05-06 13:46:14,875 - WARNING - Error processing participant 4.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:14,876 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:14,876 - INFO - Processing participant 5.0... -2025-05-06 13:46:14,876 - INFO - Fitting SINDy model for participant 5.0 -2025-05-06 13:46:15,982 - WARNING - Error processing participant 5.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:15,983 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:15,983 - INFO - Processing participant 6.0... -2025-05-06 13:46:15,983 - INFO - Fitting SINDy model for participant 6.0 -2025-05-06 13:46:17,087 - WARNING - Error processing participant 6.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:17,087 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:17,087 - INFO - Processing participant 7.0... -2025-05-06 13:46:17,087 - INFO - Fitting SINDy model for participant 7.0 -2025-05-06 13:46:18,159 - WARNING - Error processing participant 7.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:18,159 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:18,159 - INFO - Processing participant 8.0... -2025-05-06 13:46:18,159 - INFO - Fitting SINDy model for participant 8.0 -2025-05-06 13:46:19,199 - WARNING - Error processing participant 8.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:19,199 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:19,199 - INFO - Processing participant 9.0... -2025-05-06 13:46:19,199 - INFO - Fitting SINDy model for participant 9.0 -2025-05-06 13:46:20,232 - WARNING - Error processing participant 9.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:20,233 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:20,233 - INFO - Processing participant 10.0... -2025-05-06 13:46:20,233 - INFO - Fitting SINDy model for participant 10.0 -2025-05-06 13:46:21,279 - WARNING - Error processing participant 10.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:21,279 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:21,279 - INFO - Processing participant 11.0... -2025-05-06 13:46:21,280 - INFO - Fitting SINDy model for participant 11.0 -2025-05-06 13:46:22,302 - WARNING - Error processing participant 11.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:22,302 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:22,302 - INFO - Processing participant 12.0... -2025-05-06 13:46:22,303 - INFO - Fitting SINDy model for participant 12.0 -2025-05-06 13:46:23,412 - WARNING - Error processing participant 12.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:23,412 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:23,412 - INFO - Processing participant 13.0... -2025-05-06 13:46:23,413 - INFO - Fitting SINDy model for participant 13.0 -2025-05-06 13:46:24,423 - WARNING - Error processing participant 13.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:24,424 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:24,424 - INFO - Processing participant 14.0... -2025-05-06 13:46:24,424 - INFO - Fitting SINDy model for participant 14.0 -2025-05-06 13:46:25,435 - WARNING - Error processing participant 14.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:25,436 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:25,436 - INFO - Processing participant 15.0... -2025-05-06 13:46:25,436 - INFO - Fitting SINDy model for participant 15.0 -2025-05-06 13:46:26,510 - WARNING - Error processing participant 15.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:26,510 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:26,510 - INFO - Processing participant 16.0... -2025-05-06 13:46:26,510 - INFO - Fitting SINDy model for participant 16.0 -2025-05-06 13:46:27,550 - WARNING - Error processing participant 16.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:27,551 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:27,551 - INFO - Processing participant 17.0... -2025-05-06 13:46:27,551 - INFO - Fitting SINDy model for participant 17.0 -2025-05-06 13:46:28,588 - WARNING - Error processing participant 17.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:28,588 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:28,588 - INFO - Processing participant 18.0... -2025-05-06 13:46:28,588 - INFO - Fitting SINDy model for participant 18.0 -2025-05-06 13:46:29,636 - WARNING - Error processing participant 18.0: 'NoneType' object is not subscriptable -2025-05-06 13:46:29,636 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters()[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - File "/home/daniel/repositories/closedloop_rl/resources/bandits.py", line 466, in count_parameters - beta_value_module = betas[mapping_modules_values[submodule]] - ~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ -TypeError: 'NoneType' object is not subscriptable - -2025-05-06 13:46:29,636 - INFO - Processing participant 19.0... -2025-05-06 13:46:29,636 - INFO - Fitting SINDy model for participant 19.0 -2025-05-06 13:48:38,542 - INFO - ================================================================================ -2025-05-06 13:48:38,542 - INFO - EXPERIMENT CONFIG -2025-05-06 13:48:38,542 - INFO - ================================================================================ -2025-05-06 13:48:38,542 - INFO - Found 1 data files: ['data_128p_0.csv'] -2025-05-06 13:48:38,542 - INFO - Processing dataset: data_128p_0.csv -2025-05-06 13:48:38,542 - INFO - Loading dataset from data/optuna/data_128p_0.csv -2025-05-06 13:48:38,578 - INFO - Number of participants: 128 -2025-05-06 13:48:38,584 - INFO - Participant 0 (ID=0.0): α_reward=0.74, α_penalty=0.97 -2025-05-06 13:48:38,589 - INFO - Participant 1 (ID=1.0): α_reward=0.99, α_penalty=0.02 -2025-05-06 13:48:38,595 - INFO - Participant 2 (ID=2.0): α_reward=0.77, α_penalty=0.46 -2025-05-06 13:48:38,600 - INFO - Participant 3 (ID=3.0): α_reward=0.96, α_penalty=0.60 -2025-05-06 13:48:38,605 - INFO - Participant 4 (ID=4.0): α_reward=0.21, α_penalty=0.21 -2025-05-06 13:48:38,611 - INFO - Participant 5 (ID=5.0): α_reward=0.07, α_penalty=0.51 -2025-05-06 13:48:38,616 - INFO - Participant 6 (ID=6.0): α_reward=0.23, α_penalty=0.60 -2025-05-06 13:48:38,621 - INFO - Participant 7 (ID=7.0): α_reward=0.91, α_penalty=0.80 -2025-05-06 13:48:38,626 - INFO - Participant 8 (ID=8.0): α_reward=0.99, α_penalty=0.97 -2025-05-06 13:48:38,632 - INFO - Participant 9 (ID=9.0): α_reward=0.67, α_penalty=0.87 -2025-05-06 13:48:38,637 - INFO - Participant 10 (ID=10.0): α_reward=0.08, α_penalty=0.77 -2025-05-06 13:48:38,643 - INFO - Participant 11 (ID=11.0): α_reward=0.87, α_penalty=0.31 -2025-05-06 13:48:38,648 - INFO - Participant 12 (ID=12.0): α_reward=0.58, α_penalty=0.19 -2025-05-06 13:48:38,653 - INFO - Participant 13 (ID=13.0): α_reward=0.48, α_penalty=0.25 -2025-05-06 13:48:38,659 - INFO - Participant 14 (ID=14.0): α_reward=0.34, α_penalty=0.83 -2025-05-06 13:48:38,664 - INFO - Participant 15 (ID=15.0): α_reward=0.56, α_penalty=0.80 -2025-05-06 13:48:38,669 - INFO - Participant 16 (ID=16.0): α_reward=0.47, α_penalty=0.29 -2025-05-06 13:48:38,675 - INFO - Participant 17 (ID=17.0): α_reward=0.77, α_penalty=0.94 -2025-05-06 13:48:38,680 - INFO - Participant 18 (ID=18.0): α_reward=0.88, α_penalty=0.01 -2025-05-06 13:48:38,685 - INFO - Participant 19 (ID=19.0): α_reward=0.98, α_penalty=0.11 -2025-05-06 13:48:38,690 - INFO - Participant 20 (ID=20.0): α_reward=0.02, α_penalty=0.85 -2025-05-06 13:48:38,696 - INFO - Participant 21 (ID=21.0): α_reward=0.46, α_penalty=0.85 -2025-05-06 13:48:38,701 - INFO - Participant 22 (ID=22.0): α_reward=0.69, α_penalty=0.43 -2025-05-06 13:48:38,706 - INFO - Participant 23 (ID=23.0): α_reward=0.15, α_penalty=0.95 -2025-05-06 13:48:38,711 - INFO - Participant 24 (ID=24.0): α_reward=0.25, α_penalty=0.36 -2025-05-06 13:48:38,717 - INFO - Participant 25 (ID=25.0): α_reward=0.75, α_penalty=0.11 -2025-05-06 13:48:38,722 - INFO - Participant 26 (ID=26.0): α_reward=0.46, α_penalty=0.81 -2025-05-06 13:48:38,727 - INFO - Participant 27 (ID=27.0): α_reward=0.36, α_penalty=0.63 -2025-05-06 13:48:38,733 - INFO - Participant 28 (ID=28.0): α_reward=0.49, α_penalty=0.00 -2025-05-06 13:48:38,738 - INFO - Participant 29 (ID=29.0): α_reward=0.20, α_penalty=0.98 -2025-05-06 13:48:38,743 - INFO - Participant 30 (ID=30.0): α_reward=0.29, α_penalty=0.64 -2025-05-06 13:48:38,748 - INFO - Participant 31 (ID=31.0): α_reward=0.66, α_penalty=0.64 -2025-05-06 13:48:38,754 - INFO - Participant 32 (ID=32.0): α_reward=0.21, α_penalty=0.41 -2025-05-06 13:48:38,759 - INFO - Participant 33 (ID=33.0): α_reward=0.49, α_penalty=0.63 -2025-05-06 13:48:38,765 - INFO - Participant 34 (ID=34.0): α_reward=0.38, α_penalty=0.08 -2025-05-06 13:48:38,770 - INFO - Participant 35 (ID=35.0): α_reward=0.33, α_penalty=0.29 -2025-05-06 13:48:38,775 - INFO - Participant 36 (ID=36.0): α_reward=0.53, α_penalty=0.61 -2025-05-06 13:48:38,780 - INFO - Participant 37 (ID=37.0): α_reward=0.65, α_penalty=0.34 -2025-05-06 13:48:38,786 - INFO - Participant 38 (ID=38.0): α_reward=0.29, α_penalty=0.13 -2025-05-06 13:48:38,791 - INFO - Participant 39 (ID=39.0): α_reward=0.31, α_penalty=0.25 -2025-05-06 13:48:38,796 - INFO - Participant 40 (ID=40.0): α_reward=0.77, α_penalty=0.04 -2025-05-06 13:48:38,801 - INFO - Participant 41 (ID=41.0): α_reward=0.23, α_penalty=0.89 -2025-05-06 13:48:38,807 - INFO - Participant 42 (ID=42.0): α_reward=0.63, α_penalty=0.60 -2025-05-06 13:48:38,812 - INFO - Participant 43 (ID=43.0): α_reward=0.48, α_penalty=0.52 -2025-05-06 13:48:38,817 - INFO - Participant 44 (ID=44.0): α_reward=0.92, α_penalty=0.22 -2025-05-06 13:48:38,823 - INFO - Participant 45 (ID=45.0): α_reward=0.52, α_penalty=0.89 -2025-05-06 13:48:38,828 - INFO - Participant 46 (ID=46.0): α_reward=0.42, α_penalty=0.83 -2025-05-06 13:48:38,833 - INFO - Participant 47 (ID=47.0): α_reward=0.68, α_penalty=0.69 -2025-05-06 13:48:38,838 - INFO - Participant 48 (ID=48.0): α_reward=0.95, α_penalty=0.22 -2025-05-06 13:48:38,844 - INFO - Participant 49 (ID=49.0): α_reward=0.13, α_penalty=0.48 -2025-05-06 13:48:38,849 - INFO - Participant 50 (ID=50.0): α_reward=0.87, α_penalty=0.85 -2025-05-06 13:48:38,854 - INFO - Participant 51 (ID=51.0): α_reward=0.47, α_penalty=0.07 -2025-05-06 13:48:38,860 - INFO - Participant 52 (ID=52.0): α_reward=0.56, α_penalty=0.42 -2025-05-06 13:48:38,865 - INFO - Participant 53 (ID=53.0): α_reward=0.53, α_penalty=0.18 -2025-05-06 13:48:38,870 - INFO - Participant 54 (ID=54.0): α_reward=0.87, α_penalty=0.73 -2025-05-06 13:48:38,876 - INFO - Participant 55 (ID=55.0): α_reward=0.21, α_penalty=0.47 -2025-05-06 13:48:38,881 - INFO - Participant 56 (ID=56.0): α_reward=0.65, α_penalty=0.09 -2025-05-06 13:48:38,886 - INFO - Participant 57 (ID=57.0): α_reward=0.72, α_penalty=0.88 -2025-05-06 13:48:38,892 - INFO - Participant 58 (ID=58.0): α_reward=0.61, α_penalty=0.38 -2025-05-06 13:48:38,897 - INFO - Participant 59 (ID=59.0): α_reward=0.92, α_penalty=0.91 -2025-05-06 13:48:38,902 - INFO - Participant 60 (ID=60.0): α_reward=0.22, α_penalty=0.97 -2025-05-06 13:48:38,907 - INFO - Participant 61 (ID=61.0): α_reward=0.41, α_penalty=0.53 -2025-05-06 13:48:38,913 - INFO - Participant 62 (ID=62.0): α_reward=0.92, α_penalty=0.99 -2025-05-06 13:48:38,918 - INFO - Participant 63 (ID=63.0): α_reward=0.22, α_penalty=0.99 -2025-05-06 13:48:38,923 - INFO - Participant 64 (ID=64.0): α_reward=0.84, α_penalty=0.96 -2025-05-06 13:48:38,929 - INFO - Participant 65 (ID=65.0): α_reward=0.55, α_penalty=0.19 -2025-05-06 13:48:38,934 - INFO - Participant 66 (ID=66.0): α_reward=0.34, α_penalty=0.07 -2025-05-06 13:48:38,939 - INFO - Participant 67 (ID=67.0): α_reward=0.62, α_penalty=0.45 -2025-05-06 13:48:38,944 - INFO - Participant 68 (ID=68.0): α_reward=0.47, α_penalty=0.19 -2025-05-06 13:48:38,950 - INFO - Participant 69 (ID=69.0): α_reward=0.81, α_penalty=0.36 -2025-05-06 13:48:38,955 - INFO - Participant 70 (ID=70.0): α_reward=0.73, α_penalty=0.87 -2025-05-06 13:48:38,960 - INFO - Participant 71 (ID=71.0): α_reward=0.10, α_penalty=0.57 -2025-05-06 13:48:38,965 - INFO - Participant 72 (ID=72.0): α_reward=0.78, α_penalty=0.50 -2025-05-06 13:48:38,971 - INFO - Participant 73 (ID=73.0): α_reward=0.82, α_penalty=0.70 -2025-05-06 13:48:38,976 - INFO - Participant 74 (ID=74.0): α_reward=0.00, α_penalty=0.98 -2025-05-06 13:48:38,981 - INFO - Participant 75 (ID=75.0): α_reward=0.42, α_penalty=0.26 -2025-05-06 13:48:38,987 - INFO - Participant 76 (ID=76.0): α_reward=0.83, α_penalty=0.39 -2025-05-06 13:48:38,992 - INFO - Participant 77 (ID=77.0): α_reward=0.75, α_penalty=0.18 -2025-05-06 13:48:38,997 - INFO - Participant 78 (ID=78.0): α_reward=0.97, α_penalty=0.44 -2025-05-06 13:48:39,002 - INFO - Participant 79 (ID=79.0): α_reward=0.45, α_penalty=0.57 -2025-05-06 13:48:39,008 - INFO - Participant 80 (ID=80.0): α_reward=0.63, α_penalty=0.78 -2025-05-06 13:48:39,013 - INFO - Participant 81 (ID=81.0): α_reward=0.29, α_penalty=0.24 -2025-05-06 13:48:39,018 - INFO - Participant 82 (ID=82.0): α_reward=0.71, α_penalty=0.15 -2025-05-06 13:48:39,023 - INFO - Participant 83 (ID=83.0): α_reward=0.71, α_penalty=0.66 -2025-05-06 13:48:39,029 - INFO - Participant 84 (ID=84.0): α_reward=0.97, α_penalty=0.79 -2025-05-06 13:48:39,034 - INFO - Participant 85 (ID=85.0): α_reward=1.00, α_penalty=0.95 -2025-05-06 13:48:39,039 - INFO - Participant 86 (ID=86.0): α_reward=0.56, α_penalty=0.08 -2025-05-06 13:48:39,045 - INFO - Participant 87 (ID=87.0): α_reward=0.59, α_penalty=0.83 -2025-05-06 13:48:39,050 - INFO - Participant 88 (ID=88.0): α_reward=0.32, α_penalty=0.60 -2025-05-06 13:48:39,055 - INFO - Participant 89 (ID=89.0): α_reward=0.20, α_penalty=0.84 -2025-05-06 13:48:39,060 - INFO - Participant 90 (ID=90.0): α_reward=0.34, α_penalty=1.00 -2025-05-06 13:48:39,066 - INFO - Participant 91 (ID=91.0): α_reward=0.19, α_penalty=0.99 -2025-05-06 13:48:39,071 - INFO - Participant 92 (ID=92.0): α_reward=0.20, α_penalty=0.91 -2025-05-06 13:48:39,076 - INFO - Participant 93 (ID=93.0): α_reward=0.31, α_penalty=0.21 -2025-05-06 13:48:39,082 - INFO - Participant 94 (ID=94.0): α_reward=0.58, α_penalty=0.41 -2025-05-06 13:48:39,087 - INFO - Participant 95 (ID=95.0): α_reward=0.80, α_penalty=0.54 -2025-05-06 13:48:39,092 - INFO - Participant 96 (ID=96.0): α_reward=0.74, α_penalty=0.80 -2025-05-06 13:48:39,098 - INFO - Participant 97 (ID=97.0): α_reward=0.59, α_penalty=0.16 -2025-05-06 13:48:39,103 - INFO - Participant 98 (ID=98.0): α_reward=0.54, α_penalty=0.17 -2025-05-06 13:48:39,108 - INFO - Participant 99 (ID=99.0): α_reward=0.17, α_penalty=0.16 -2025-05-06 13:48:39,114 - INFO - Participant 100 (ID=100.0): α_reward=0.79, α_penalty=0.40 -2025-05-06 13:48:39,119 - INFO - Participant 101 (ID=101.0): α_reward=0.32, α_penalty=0.05 -2025-05-06 13:48:39,124 - INFO - Participant 102 (ID=102.0): α_reward=0.87, α_penalty=0.81 -2025-05-06 13:48:39,130 - INFO - Participant 103 (ID=103.0): α_reward=0.90, α_penalty=0.11 -2025-05-06 13:48:39,135 - INFO - Participant 104 (ID=104.0): α_reward=0.44, α_penalty=0.12 -2025-05-06 13:48:39,140 - INFO - Participant 105 (ID=105.0): α_reward=0.59, α_penalty=0.50 -2025-05-06 13:48:39,146 - INFO - Participant 106 (ID=106.0): α_reward=0.84, α_penalty=0.50 -2025-05-06 13:48:39,152 - INFO - Participant 107 (ID=107.0): α_reward=0.48, α_penalty=0.54 -2025-05-06 13:48:39,157 - INFO - Participant 108 (ID=108.0): α_reward=0.56, α_penalty=0.75 -2025-05-06 13:48:39,161 - INFO - Participant 109 (ID=109.0): α_reward=0.53, α_penalty=0.11 -2025-05-06 13:48:39,167 - INFO - Participant 110 (ID=110.0): α_reward=0.52, α_penalty=0.40 -2025-05-06 13:48:39,173 - INFO - Participant 111 (ID=111.0): α_reward=0.61, α_penalty=0.74 -2025-05-06 13:48:39,178 - INFO - Participant 112 (ID=112.0): α_reward=0.64, α_penalty=0.56 -2025-05-06 13:48:39,183 - INFO - Participant 113 (ID=113.0): α_reward=0.44, α_penalty=0.40 -2025-05-06 13:48:39,189 - INFO - Participant 114 (ID=114.0): α_reward=0.74, α_penalty=0.91 -2025-05-06 13:48:39,194 - INFO - Participant 115 (ID=115.0): α_reward=0.09, α_penalty=0.27 -2025-05-06 13:48:39,199 - INFO - Participant 116 (ID=116.0): α_reward=0.99, α_penalty=0.92 -2025-05-06 13:48:39,205 - INFO - Participant 117 (ID=117.0): α_reward=0.90, α_penalty=0.87 -2025-05-06 13:48:39,210 - INFO - Participant 118 (ID=118.0): α_reward=0.21, α_penalty=0.27 -2025-05-06 13:48:39,216 - INFO - Participant 119 (ID=119.0): α_reward=0.71, α_penalty=0.69 -2025-05-06 13:48:39,221 - INFO - Participant 120 (ID=120.0): α_reward=0.43, α_penalty=0.05 -2025-05-06 13:48:39,227 - INFO - Participant 121 (ID=121.0): α_reward=0.11, α_penalty=0.27 -2025-05-06 13:48:39,232 - INFO - Participant 122 (ID=122.0): α_reward=0.80, α_penalty=0.43 -2025-05-06 13:48:39,238 - INFO - Participant 123 (ID=123.0): α_reward=0.74, α_penalty=0.44 -2025-05-06 13:48:39,243 - INFO - Participant 124 (ID=124.0): α_reward=0.18, α_penalty=0.36 -2025-05-06 13:48:39,249 - INFO - Participant 125 (ID=125.0): α_reward=0.86, α_penalty=0.09 -2025-05-06 13:48:39,255 - INFO - Participant 126 (ID=126.0): α_reward=0.05, α_penalty=0.52 -2025-05-06 13:48:39,260 - INFO - Participant 127 (ID=127.0): α_reward=0.41, α_penalty=0.26 -2025-05-06 13:48:39,260 - INFO - Participant 0 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 1 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 2 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 3 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 4 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 5 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 6 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 7 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 8 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 9 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 10 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 11 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 12 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 13 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 14 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,260 - INFO - Participant 15 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 16 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 17 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 18 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 19 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 20 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 21 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 22 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 23 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 24 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 25 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 26 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 27 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 28 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 29 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 30 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 31 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 32 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 33 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 34 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 35 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 36 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 37 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 38 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 39 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 40 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 41 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 42 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 43 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 44 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 45 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 46 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 47 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 48 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 49 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 50 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 51 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 52 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 53 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 54 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 55 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 56 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 57 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 58 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 59 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 60 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 61 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 62 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 63 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 64 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 65 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 66 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 67 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 68 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 69 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 70 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 71 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 72 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 73 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 74 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 75 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 76 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 77 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 78 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 79 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 80 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 81 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 82 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 83 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,261 - INFO - Participant 84 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 85 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 86 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 87 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 88 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 89 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 90 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 91 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 92 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 93 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 94 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 95 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 96 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 97 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 98 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 99 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 100 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 101 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 102 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 103 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 104 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 105 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 106 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 107 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 108 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 109 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 110 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 111 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 112 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 113 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 114 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 115 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 116 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 117 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 118 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 119 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 120 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 121 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 122 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 123 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 124 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 125 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 126 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Participant 127 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Combined xs shape after concatenation: torch.Size([128, 200, 5]) -2025-05-06 13:48:39,262 - INFO - Combined ys shape after concatenation: torch.Size([128, 200, 2]) -2025-05-06 13:48:39,262 - INFO - Combined dataset shape: X=torch.Size([128, 200, 5]), Y=torch.Size([128, 200, 2]) -2025-05-06 13:48:39,263 - INFO - Total unique participants: 128 -2025-05-06 13:48:39,263 - INFO - Train/test split ratio: 0.8/0.19999999999999996 of trials within each participant -2025-05-06 13:48:39,263 - INFO - Participant 0.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,263 - INFO - Participant 1.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,263 - INFO - Participant 2.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,263 - INFO - Participant 3.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,263 - INFO - Participant 4.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,263 - INFO - Participant 5.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 6.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 7.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 8.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 9.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 10.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 11.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 12.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 13.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 14.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 15.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 16.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 17.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 18.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 19.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 20.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 21.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 22.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 23.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 24.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,264 - INFO - Participant 25.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 26.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 27.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 28.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 29.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 30.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 31.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 32.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 33.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 34.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 35.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 36.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 37.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 38.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 39.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 40.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 41.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 42.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 43.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 44.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,265 - INFO - Participant 45.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 46.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 47.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 48.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 49.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 50.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 51.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 52.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 53.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 54.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 55.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 56.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 57.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 58.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 59.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 60.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 61.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 62.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 63.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 64.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 65.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 66.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,266 - INFO - Participant 67.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 68.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 69.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 70.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 71.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 72.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 73.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 74.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 75.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 76.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 77.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 78.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 79.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 80.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 81.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 82.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 83.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 84.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 85.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 86.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 87.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 88.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,267 - INFO - Participant 89.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 90.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 91.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 92.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 93.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 94.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 95.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 96.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 97.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 98.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 99.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 100.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 101.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 102.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 103.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 104.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 105.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 106.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 107.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 108.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 109.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 110.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 111.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,268 - INFO - Participant 112.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 113.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 114.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 115.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 116.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 117.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 118.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 119.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 120.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 121.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 122.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 123.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 124.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 125.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 126.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Participant 127.0: 160 trials for training, 40 trials for validation -2025-05-06 13:48:39,269 - INFO - Train xs shape: torch.Size([128, 160, 5]) -2025-05-06 13:48:39,270 - INFO - Train ys shape: torch.Size([128, 160, 2]) -2025-05-06 13:48:39,270 - INFO - Validation xs shape: torch.Size([128, 40, 5]) -2025-05-06 13:48:39,270 - INFO - Validation ys shape: torch.Size([128, 40, 2]) -2025-05-06 13:48:39,270 - INFO - Train dataset: torch.Size([128, 160, 5]), Validation dataset: torch.Size([128, 40, 5]) -2025-05-06 13:48:39,270 - INFO - Starting hyperparameter optimization... -2025-05-06 13:48:39,271 - INFO - Trial 0: l1_weight_decay=0.001083, l2_weight_decay=0.000004 -2025-05-06 13:48:46,501 - INFO - Trial 0: RNN Train Loss: 0.5222022; SPICE Train Loss: 2.994627576656261 -2025-05-06 13:48:46,532 - INFO - Trial 0: Average Validation Loss: 3.4181, Eval count: 40 -2025-05-06 13:48:46,533 - INFO - Best hyperparameters: {'l1_weight_decay': 0.0010834130968485236, 'l2_weight_decay': 4.098347307304995e-06} -2025-05-06 13:48:46,533 - INFO - Best validation loss: 3.4181 -2025-05-06 13:48:51,896 - INFO - Final RNN training loss: 0.6296792 -2025-05-06 13:48:51,897 - INFO - Evaluating with SINDy - fitting separate models for each participant's validation trials -2025-05-06 13:48:51,897 - INFO - Processing participant 0.0... -2025-05-06 13:48:51,897 - INFO - Fitting SINDy model for participant 0.0 -2025-05-06 13:48:53,176 - INFO - Participant 0.0: LL=-0.8440, BIC=2.3336, Params=7, Val trials=40 -2025-05-06 13:48:53,176 - INFO - Processing participant 1.0... -2025-05-06 13:48:53,176 - INFO - Fitting SINDy model for participant 1.0 -2025-05-06 13:48:54,264 - WARNING - Error processing participant 1.0: 1.0 -2025-05-06 13:48:54,264 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters(mapping_modules_values={'x_learning_rate_reward': 'x_value_reward', 'x_value_reward_not_chosen': 'x_value_reward', 'x_value_choice_chosen': 'x_value_choice', 'x_value_choice_not_chosen': 'x_value_choice'})[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^ -KeyError: 1.0 - -2025-05-06 13:48:54,264 - INFO - Processing participant 2.0... -2025-05-06 13:48:54,264 - INFO - Fitting SINDy model for participant 2.0 -2025-05-06 13:48:55,366 - WARNING - Error processing participant 2.0: 2.0 -2025-05-06 13:48:55,366 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters(mapping_modules_values={'x_learning_rate_reward': 'x_value_reward', 'x_value_reward_not_chosen': 'x_value_reward', 'x_value_choice_chosen': 'x_value_choice', 'x_value_choice_not_chosen': 'x_value_choice'})[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^ -KeyError: 2.0 - -2025-05-06 13:48:55,367 - INFO - Processing participant 3.0... -2025-05-06 13:48:55,367 - INFO - Fitting SINDy model for participant 3.0 -2025-05-06 13:48:56,488 - WARNING - Error processing participant 3.0: 3.0 -2025-05-06 13:48:56,489 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters(mapping_modules_values={'x_learning_rate_reward': 'x_value_reward', 'x_value_reward_not_chosen': 'x_value_reward', 'x_value_choice_chosen': 'x_value_choice', 'x_value_choice_not_chosen': 'x_value_choice'})[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^ -KeyError: 3.0 - -2025-05-06 13:48:56,489 - INFO - Processing participant 4.0... -2025-05-06 13:48:56,489 - INFO - Fitting SINDy model for participant 4.0 -2025-05-06 13:48:57,611 - WARNING - Error processing participant 4.0: 4.0 -2025-05-06 13:48:57,611 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters(mapping_modules_values={'x_learning_rate_reward': 'x_value_reward', 'x_value_reward_not_chosen': 'x_value_reward', 'x_value_choice_chosen': 'x_value_choice', 'x_value_choice_not_chosen': 'x_value_choice'})[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^ -KeyError: 4.0 - -2025-05-06 13:48:57,611 - INFO - Processing participant 5.0... -2025-05-06 13:48:57,611 - INFO - Fitting SINDy model for participant 5.0 -2025-05-06 13:51:33,676 - INFO - ================================================================================ -2025-05-06 13:51:33,676 - INFO - EXPERIMENT CONFIG -2025-05-06 13:51:33,676 - INFO - ================================================================================ -2025-05-06 13:51:33,676 - INFO - Found 1 data files: ['data_128p_0.csv'] -2025-05-06 13:51:33,676 - INFO - Processing dataset: data_128p_0.csv -2025-05-06 13:51:33,676 - INFO - Loading dataset from data/optuna/data_128p_0.csv -2025-05-06 13:51:33,714 - INFO - Number of participants: 128 -2025-05-06 13:51:33,720 - INFO - Participant 0 (ID=0.0): α_reward=0.74, α_penalty=0.97 -2025-05-06 13:51:33,726 - INFO - Participant 1 (ID=1.0): α_reward=0.99, α_penalty=0.02 -2025-05-06 13:51:33,732 - INFO - Participant 2 (ID=2.0): α_reward=0.77, α_penalty=0.46 -2025-05-06 13:51:33,738 - INFO - Participant 3 (ID=3.0): α_reward=0.96, α_penalty=0.60 -2025-05-06 13:51:33,743 - INFO - Participant 4 (ID=4.0): α_reward=0.21, α_penalty=0.21 -2025-05-06 13:51:33,749 - INFO - Participant 5 (ID=5.0): α_reward=0.07, α_penalty=0.51 -2025-05-06 13:51:33,755 - INFO - Participant 6 (ID=6.0): α_reward=0.23, α_penalty=0.60 -2025-05-06 13:51:33,761 - INFO - Participant 7 (ID=7.0): α_reward=0.91, α_penalty=0.80 -2025-05-06 13:51:33,767 - INFO - Participant 8 (ID=8.0): α_reward=0.99, α_penalty=0.97 -2025-05-06 13:51:33,773 - INFO - Participant 9 (ID=9.0): α_reward=0.67, α_penalty=0.87 -2025-05-06 13:51:33,779 - INFO - Participant 10 (ID=10.0): α_reward=0.08, α_penalty=0.77 -2025-05-06 13:51:33,785 - INFO - Participant 11 (ID=11.0): α_reward=0.87, α_penalty=0.31 -2025-05-06 13:51:33,791 - INFO - Participant 12 (ID=12.0): α_reward=0.58, α_penalty=0.19 -2025-05-06 13:51:33,797 - INFO - Participant 13 (ID=13.0): α_reward=0.48, α_penalty=0.25 -2025-05-06 13:51:33,803 - INFO - Participant 14 (ID=14.0): α_reward=0.34, α_penalty=0.83 -2025-05-06 13:51:33,808 - INFO - Participant 15 (ID=15.0): α_reward=0.56, α_penalty=0.80 -2025-05-06 13:51:33,814 - INFO - Participant 16 (ID=16.0): α_reward=0.47, α_penalty=0.29 -2025-05-06 13:51:33,820 - INFO - Participant 17 (ID=17.0): α_reward=0.77, α_penalty=0.94 -2025-05-06 13:51:33,826 - INFO - Participant 18 (ID=18.0): α_reward=0.88, α_penalty=0.01 -2025-05-06 13:51:33,832 - INFO - Participant 19 (ID=19.0): α_reward=0.98, α_penalty=0.11 -2025-05-06 13:51:33,838 - INFO - Participant 20 (ID=20.0): α_reward=0.02, α_penalty=0.85 -2025-05-06 13:51:33,844 - INFO - Participant 21 (ID=21.0): α_reward=0.46, α_penalty=0.85 -2025-05-06 13:51:33,850 - INFO - Participant 22 (ID=22.0): α_reward=0.69, α_penalty=0.43 -2025-05-06 13:51:33,856 - INFO - Participant 23 (ID=23.0): α_reward=0.15, α_penalty=0.95 -2025-05-06 13:51:33,862 - INFO - Participant 24 (ID=24.0): α_reward=0.25, α_penalty=0.36 -2025-05-06 13:51:33,868 - INFO - Participant 25 (ID=25.0): α_reward=0.75, α_penalty=0.11 -2025-05-06 13:51:33,873 - INFO - Participant 26 (ID=26.0): α_reward=0.46, α_penalty=0.81 -2025-05-06 13:51:33,879 - INFO - Participant 27 (ID=27.0): α_reward=0.36, α_penalty=0.63 -2025-05-06 13:51:33,885 - INFO - Participant 28 (ID=28.0): α_reward=0.49, α_penalty=0.00 -2025-05-06 13:51:33,891 - INFO - Participant 29 (ID=29.0): α_reward=0.20, α_penalty=0.98 -2025-05-06 13:51:33,897 - INFO - Participant 30 (ID=30.0): α_reward=0.29, α_penalty=0.64 -2025-05-06 13:51:33,903 - INFO - Participant 31 (ID=31.0): α_reward=0.66, α_penalty=0.64 -2025-05-06 13:51:33,908 - INFO - Participant 32 (ID=32.0): α_reward=0.21, α_penalty=0.41 -2025-05-06 13:51:33,914 - INFO - Participant 33 (ID=33.0): α_reward=0.49, α_penalty=0.63 -2025-05-06 13:51:33,920 - INFO - Participant 34 (ID=34.0): α_reward=0.38, α_penalty=0.08 -2025-05-06 13:51:33,926 - INFO - Participant 35 (ID=35.0): α_reward=0.33, α_penalty=0.29 -2025-05-06 13:51:33,932 - INFO - Participant 36 (ID=36.0): α_reward=0.53, α_penalty=0.61 -2025-05-06 13:51:33,938 - INFO - Participant 37 (ID=37.0): α_reward=0.65, α_penalty=0.34 -2025-05-06 13:51:33,943 - INFO - Participant 38 (ID=38.0): α_reward=0.29, α_penalty=0.13 -2025-05-06 13:51:33,950 - INFO - Participant 39 (ID=39.0): α_reward=0.31, α_penalty=0.25 -2025-05-06 13:51:33,955 - INFO - Participant 40 (ID=40.0): α_reward=0.77, α_penalty=0.04 -2025-05-06 13:51:33,961 - INFO - Participant 41 (ID=41.0): α_reward=0.23, α_penalty=0.89 -2025-05-06 13:51:33,967 - INFO - Participant 42 (ID=42.0): α_reward=0.63, α_penalty=0.60 -2025-05-06 13:51:33,973 - INFO - Participant 43 (ID=43.0): α_reward=0.48, α_penalty=0.52 -2025-05-06 13:51:33,979 - INFO - Participant 44 (ID=44.0): α_reward=0.92, α_penalty=0.22 -2025-05-06 13:51:33,985 - INFO - Participant 45 (ID=45.0): α_reward=0.52, α_penalty=0.89 -2025-05-06 13:51:33,991 - INFO - Participant 46 (ID=46.0): α_reward=0.42, α_penalty=0.83 -2025-05-06 13:51:33,996 - INFO - Participant 47 (ID=47.0): α_reward=0.68, α_penalty=0.69 -2025-05-06 13:51:34,002 - INFO - Participant 48 (ID=48.0): α_reward=0.95, α_penalty=0.22 -2025-05-06 13:51:34,008 - INFO - Participant 49 (ID=49.0): α_reward=0.13, α_penalty=0.48 -2025-05-06 13:51:34,014 - INFO - Participant 50 (ID=50.0): α_reward=0.87, α_penalty=0.85 -2025-05-06 13:51:34,020 - INFO - Participant 51 (ID=51.0): α_reward=0.47, α_penalty=0.07 -2025-05-06 13:51:34,026 - INFO - Participant 52 (ID=52.0): α_reward=0.56, α_penalty=0.42 -2025-05-06 13:51:34,031 - INFO - Participant 53 (ID=53.0): α_reward=0.53, α_penalty=0.18 -2025-05-06 13:51:34,037 - INFO - Participant 54 (ID=54.0): α_reward=0.87, α_penalty=0.73 -2025-05-06 13:51:34,043 - INFO - Participant 55 (ID=55.0): α_reward=0.21, α_penalty=0.47 -2025-05-06 13:51:34,049 - INFO - Participant 56 (ID=56.0): α_reward=0.65, α_penalty=0.09 -2025-05-06 13:51:34,055 - INFO - Participant 57 (ID=57.0): α_reward=0.72, α_penalty=0.88 -2025-05-06 13:51:34,060 - INFO - Participant 58 (ID=58.0): α_reward=0.61, α_penalty=0.38 -2025-05-06 13:51:34,066 - INFO - Participant 59 (ID=59.0): α_reward=0.92, α_penalty=0.91 -2025-05-06 13:51:34,072 - INFO - Participant 60 (ID=60.0): α_reward=0.22, α_penalty=0.97 -2025-05-06 13:51:34,077 - INFO - Participant 61 (ID=61.0): α_reward=0.41, α_penalty=0.53 -2025-05-06 13:51:34,083 - INFO - Participant 62 (ID=62.0): α_reward=0.92, α_penalty=0.99 -2025-05-06 13:51:34,089 - INFO - Participant 63 (ID=63.0): α_reward=0.22, α_penalty=0.99 -2025-05-06 13:51:34,094 - INFO - Participant 64 (ID=64.0): α_reward=0.84, α_penalty=0.96 -2025-05-06 13:51:34,100 - INFO - Participant 65 (ID=65.0): α_reward=0.55, α_penalty=0.19 -2025-05-06 13:51:34,106 - INFO - Participant 66 (ID=66.0): α_reward=0.34, α_penalty=0.07 -2025-05-06 13:51:34,111 - INFO - Participant 67 (ID=67.0): α_reward=0.62, α_penalty=0.45 -2025-05-06 13:51:34,117 - INFO - Participant 68 (ID=68.0): α_reward=0.47, α_penalty=0.19 -2025-05-06 13:51:34,123 - INFO - Participant 69 (ID=69.0): α_reward=0.81, α_penalty=0.36 -2025-05-06 13:51:34,129 - INFO - Participant 70 (ID=70.0): α_reward=0.73, α_penalty=0.87 -2025-05-06 13:51:34,135 - INFO - Participant 71 (ID=71.0): α_reward=0.10, α_penalty=0.57 -2025-05-06 13:51:34,141 - INFO - Participant 72 (ID=72.0): α_reward=0.78, α_penalty=0.50 -2025-05-06 13:51:34,147 - INFO - Participant 73 (ID=73.0): α_reward=0.82, α_penalty=0.70 -2025-05-06 13:51:34,152 - INFO - Participant 74 (ID=74.0): α_reward=0.00, α_penalty=0.98 -2025-05-06 13:51:34,158 - INFO - Participant 75 (ID=75.0): α_reward=0.42, α_penalty=0.26 -2025-05-06 13:51:34,164 - INFO - Participant 76 (ID=76.0): α_reward=0.83, α_penalty=0.39 -2025-05-06 13:51:34,169 - INFO - Participant 77 (ID=77.0): α_reward=0.75, α_penalty=0.18 -2025-05-06 13:51:34,175 - INFO - Participant 78 (ID=78.0): α_reward=0.97, α_penalty=0.44 -2025-05-06 13:51:34,181 - INFO - Participant 79 (ID=79.0): α_reward=0.45, α_penalty=0.57 -2025-05-06 13:51:34,187 - INFO - Participant 80 (ID=80.0): α_reward=0.63, α_penalty=0.78 -2025-05-06 13:51:34,193 - INFO - Participant 81 (ID=81.0): α_reward=0.29, α_penalty=0.24 -2025-05-06 13:51:34,199 - INFO - Participant 82 (ID=82.0): α_reward=0.71, α_penalty=0.15 -2025-05-06 13:51:34,204 - INFO - Participant 83 (ID=83.0): α_reward=0.71, α_penalty=0.66 -2025-05-06 13:51:34,210 - INFO - Participant 84 (ID=84.0): α_reward=0.97, α_penalty=0.79 -2025-05-06 13:51:34,216 - INFO - Participant 85 (ID=85.0): α_reward=1.00, α_penalty=0.95 -2025-05-06 13:51:34,222 - INFO - Participant 86 (ID=86.0): α_reward=0.56, α_penalty=0.08 -2025-05-06 13:51:34,228 - INFO - Participant 87 (ID=87.0): α_reward=0.59, α_penalty=0.83 -2025-05-06 13:51:34,233 - INFO - Participant 88 (ID=88.0): α_reward=0.32, α_penalty=0.60 -2025-05-06 13:51:34,239 - INFO - Participant 89 (ID=89.0): α_reward=0.20, α_penalty=0.84 -2025-05-06 13:51:34,245 - INFO - Participant 90 (ID=90.0): α_reward=0.34, α_penalty=1.00 -2025-05-06 13:51:34,251 - INFO - Participant 91 (ID=91.0): α_reward=0.19, α_penalty=0.99 -2025-05-06 13:51:34,256 - INFO - Participant 92 (ID=92.0): α_reward=0.20, α_penalty=0.91 -2025-05-06 13:51:34,262 - INFO - Participant 93 (ID=93.0): α_reward=0.31, α_penalty=0.21 -2025-05-06 13:51:34,268 - INFO - Participant 94 (ID=94.0): α_reward=0.58, α_penalty=0.41 -2025-05-06 13:51:34,274 - INFO - Participant 95 (ID=95.0): α_reward=0.80, α_penalty=0.54 -2025-05-06 13:51:34,279 - INFO - Participant 96 (ID=96.0): α_reward=0.74, α_penalty=0.80 -2025-05-06 13:51:34,285 - INFO - Participant 97 (ID=97.0): α_reward=0.59, α_penalty=0.16 -2025-05-06 13:51:34,291 - INFO - Participant 98 (ID=98.0): α_reward=0.54, α_penalty=0.17 -2025-05-06 13:51:34,296 - INFO - Participant 99 (ID=99.0): α_reward=0.17, α_penalty=0.16 -2025-05-06 13:51:34,302 - INFO - Participant 100 (ID=100.0): α_reward=0.79, α_penalty=0.40 -2025-05-06 13:51:34,308 - INFO - Participant 101 (ID=101.0): α_reward=0.32, α_penalty=0.05 -2025-05-06 13:51:34,313 - INFO - Participant 102 (ID=102.0): α_reward=0.87, α_penalty=0.81 -2025-05-06 13:51:34,319 - INFO - Participant 103 (ID=103.0): α_reward=0.90, α_penalty=0.11 -2025-05-06 13:51:34,325 - INFO - Participant 104 (ID=104.0): α_reward=0.44, α_penalty=0.12 -2025-05-06 13:51:34,330 - INFO - Participant 105 (ID=105.0): α_reward=0.59, α_penalty=0.50 -2025-05-06 13:51:34,336 - INFO - Participant 106 (ID=106.0): α_reward=0.84, α_penalty=0.50 -2025-05-06 13:51:34,342 - INFO - Participant 107 (ID=107.0): α_reward=0.48, α_penalty=0.54 -2025-05-06 13:51:34,347 - INFO - Participant 108 (ID=108.0): α_reward=0.56, α_penalty=0.75 -2025-05-06 13:51:34,353 - INFO - Participant 109 (ID=109.0): α_reward=0.53, α_penalty=0.11 -2025-05-06 13:51:34,359 - INFO - Participant 110 (ID=110.0): α_reward=0.52, α_penalty=0.40 -2025-05-06 13:51:34,364 - INFO - Participant 111 (ID=111.0): α_reward=0.61, α_penalty=0.74 -2025-05-06 13:51:34,370 - INFO - Participant 112 (ID=112.0): α_reward=0.64, α_penalty=0.56 -2025-05-06 13:51:34,376 - INFO - Participant 113 (ID=113.0): α_reward=0.44, α_penalty=0.40 -2025-05-06 13:51:34,382 - INFO - Participant 114 (ID=114.0): α_reward=0.74, α_penalty=0.91 -2025-05-06 13:51:34,387 - INFO - Participant 115 (ID=115.0): α_reward=0.09, α_penalty=0.27 -2025-05-06 13:51:34,393 - INFO - Participant 116 (ID=116.0): α_reward=0.99, α_penalty=0.92 -2025-05-06 13:51:34,399 - INFO - Participant 117 (ID=117.0): α_reward=0.90, α_penalty=0.87 -2025-05-06 13:51:34,405 - INFO - Participant 118 (ID=118.0): α_reward=0.21, α_penalty=0.27 -2025-05-06 13:51:34,410 - INFO - Participant 119 (ID=119.0): α_reward=0.71, α_penalty=0.69 -2025-05-06 13:51:34,416 - INFO - Participant 120 (ID=120.0): α_reward=0.43, α_penalty=0.05 -2025-05-06 13:51:34,422 - INFO - Participant 121 (ID=121.0): α_reward=0.11, α_penalty=0.27 -2025-05-06 13:51:34,427 - INFO - Participant 122 (ID=122.0): α_reward=0.80, α_penalty=0.43 -2025-05-06 13:51:34,433 - INFO - Participant 123 (ID=123.0): α_reward=0.74, α_penalty=0.44 -2025-05-06 13:51:34,439 - INFO - Participant 124 (ID=124.0): α_reward=0.18, α_penalty=0.36 -2025-05-06 13:51:34,444 - INFO - Participant 125 (ID=125.0): α_reward=0.86, α_penalty=0.09 -2025-05-06 13:51:34,450 - INFO - Participant 126 (ID=126.0): α_reward=0.05, α_penalty=0.52 -2025-05-06 13:51:34,456 - INFO - Participant 127 (ID=127.0): α_reward=0.41, α_penalty=0.26 -2025-05-06 13:51:34,456 - INFO - Participant 0 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 1 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 2 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 3 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 4 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 5 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 6 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 7 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 8 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 9 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 10 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 11 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 12 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 13 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 14 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 15 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 16 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 17 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 18 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 19 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 20 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 21 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 22 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 23 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 24 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 25 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 26 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 27 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 28 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 29 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 30 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 31 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 32 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 33 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 34 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 35 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,456 - INFO - Participant 36 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 37 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 38 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 39 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 40 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 41 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 42 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 43 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 44 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 45 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 46 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 47 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 48 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 49 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 50 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 51 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 52 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 53 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 54 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 55 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 56 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 57 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 58 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 59 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 60 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 61 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 62 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 63 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 64 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 65 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 66 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 67 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 68 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 69 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 70 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 71 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 72 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 73 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 74 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 75 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 76 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 77 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 78 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 79 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 80 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 81 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 82 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 83 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 84 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 85 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 86 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 87 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 88 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 89 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 90 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 91 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 92 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 93 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 94 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 95 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 96 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 97 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 98 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 99 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 100 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 101 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,457 - INFO - Participant 102 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 103 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 104 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 105 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 106 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 107 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 108 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 109 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 110 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 111 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 112 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 113 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 114 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 115 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 116 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 117 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 118 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 119 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 120 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 121 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 122 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 123 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 124 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 125 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 126 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Participant 127 xs shape: torch.Size([1, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Combined xs shape after concatenation: torch.Size([128, 200, 5]) -2025-05-06 13:51:34,458 - INFO - Combined ys shape after concatenation: torch.Size([128, 200, 2]) -2025-05-06 13:51:34,458 - INFO - Combined dataset shape: X=torch.Size([128, 200, 5]), Y=torch.Size([128, 200, 2]) -2025-05-06 13:51:34,459 - INFO - Total unique participants: 128 -2025-05-06 13:51:34,459 - INFO - Train/test split ratio: 0.8/0.19999999999999996 of trials within each participant -2025-05-06 13:51:34,459 - INFO - Participant 0.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 1.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 2.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 3.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 4.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 5.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 6.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 7.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 8.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 9.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 10.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 11.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 12.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,459 - INFO - Participant 13.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 14.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 15.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 16.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 17.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 18.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 19.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 20.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 21.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 22.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 23.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 24.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 25.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 26.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 27.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 28.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 29.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 30.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 31.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 32.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 33.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,460 - INFO - Participant 34.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 35.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 36.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 37.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 38.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 39.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 40.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 41.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 42.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 43.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 44.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 45.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 46.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 47.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 48.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 49.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 50.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 51.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 52.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 53.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 54.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 55.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,461 - INFO - Participant 56.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 57.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 58.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 59.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 60.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 61.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 62.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 63.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 64.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 65.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 66.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 67.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 68.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 69.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 70.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 71.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 72.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 73.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 74.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 75.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 76.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 77.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,462 - INFO - Participant 78.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 79.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 80.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 81.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 82.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 83.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 84.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 85.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 86.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 87.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 88.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 89.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 90.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 91.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 92.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 93.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 94.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 95.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 96.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 97.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 98.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 99.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 100.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,463 - INFO - Participant 101.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 102.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 103.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 104.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 105.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 106.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 107.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 108.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 109.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 110.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 111.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 112.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 113.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 114.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 115.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 116.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 117.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 118.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 119.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 120.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,464 - INFO - Participant 121.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,465 - INFO - Participant 122.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,465 - INFO - Participant 123.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,465 - INFO - Participant 124.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,465 - INFO - Participant 125.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,465 - INFO - Participant 126.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,465 - INFO - Participant 127.0: 160 trials for training, 40 trials for validation -2025-05-06 13:51:34,465 - INFO - Train xs shape: torch.Size([128, 160, 5]) -2025-05-06 13:51:34,465 - INFO - Train ys shape: torch.Size([128, 160, 2]) -2025-05-06 13:51:34,465 - INFO - Validation xs shape: torch.Size([128, 40, 5]) -2025-05-06 13:51:34,465 - INFO - Validation ys shape: torch.Size([128, 40, 2]) -2025-05-06 13:51:34,465 - INFO - Train dataset: torch.Size([128, 160, 5]), Validation dataset: torch.Size([128, 40, 5]) -2025-05-06 13:51:34,465 - INFO - Starting hyperparameter optimization... -2025-05-06 13:51:34,466 - INFO - Trial 0: l1_weight_decay=0.000132, l2_weight_decay=0.000003 -2025-05-06 13:51:42,061 - INFO - Trial 0: RNN Train Loss: 0.5222022; SPICE Train Loss: 2.994627576656261 -2025-05-06 13:51:42,091 - INFO - Trial 0: Average Validation Loss: 3.4181, Eval count: 40 -2025-05-06 13:51:42,092 - INFO - Best hyperparameters: {'l1_weight_decay': 0.00013179463812842057, 'l2_weight_decay': 2.6721150751802668e-06} -2025-05-06 13:51:42,092 - INFO - Best validation loss: 3.4181 -2025-05-06 13:51:47,434 - INFO - Final RNN training loss: 0.6296792 -2025-05-06 13:51:47,435 - INFO - Evaluating with SINDy - fitting separate models for each participant's validation trials -2025-05-06 13:51:47,435 - INFO - Processing participant 0.0... -2025-05-06 13:51:47,435 - INFO - Fitting SINDy model for participant 0.0 -2025-05-06 13:51:48,712 - INFO - Participant 0.0: LL=-0.8440, BIC=2.3336, Params=7, Val trials=40 -2025-05-06 13:51:48,712 - INFO - Processing participant 1.0... -2025-05-06 13:51:48,713 - INFO - Fitting SINDy model for participant 1.0 -2025-05-06 13:51:49,802 - WARNING - Error processing participant 1.0: 1.0 -2025-05-06 13:51:49,802 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters(mapping_modules_values={'x_learning_rate_reward': 'x_value_reward', 'x_value_reward_not_chosen': 'x_value_reward', 'x_value_choice_chosen': 'x_value_choice', 'x_value_choice_not_chosen': 'x_value_choice'})[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^ -KeyError: 1.0 - -2025-05-06 13:51:49,802 - INFO - Processing participant 2.0... -2025-05-06 13:51:49,802 - INFO - Fitting SINDy model for participant 2.0 -2025-05-06 13:51:50,841 - WARNING - Error processing participant 2.0: 2.0 -2025-05-06 13:51:50,842 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters(mapping_modules_values={'x_learning_rate_reward': 'x_value_reward', 'x_value_reward_not_chosen': 'x_value_reward', 'x_value_choice_chosen': 'x_value_choice', 'x_value_choice_not_chosen': 'x_value_choice'})[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^ -KeyError: 2.0 - -2025-05-06 13:51:50,842 - INFO - Processing participant 3.0... -2025-05-06 13:51:50,842 - INFO - Fitting SINDy model for participant 3.0 -2025-05-06 13:51:51,922 - WARNING - Error processing participant 3.0: 3.0 -2025-05-06 13:51:51,922 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters(mapping_modules_values={'x_learning_rate_reward': 'x_value_reward', 'x_value_reward_not_chosen': 'x_value_reward', 'x_value_choice_chosen': 'x_value_choice', 'x_value_choice_not_chosen': 'x_value_choice'})[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^ -KeyError: 3.0 - -2025-05-06 13:51:51,922 - INFO - Processing participant 4.0... -2025-05-06 13:51:51,923 - INFO - Fitting SINDy model for participant 4.0 -2025-05-06 13:51:53,009 - WARNING - Error processing participant 4.0: 4.0 -2025-05-06 13:51:53,009 - WARNING - Traceback (most recent call last): - File "/home/daniel/repositories/closedloop_rl/hyperparameter_optimization/rnn_withinsubject_finetuning.py", line 376, in evaluate_with_sindy - sindy_params = participant_sindy.count_parameters(mapping_modules_values={'x_learning_rate_reward': 'x_value_reward', 'x_value_reward_not_chosen': 'x_value_reward', 'x_value_choice_chosen': 'x_value_choice', 'x_value_choice_not_chosen': 'x_value_choice'})[pid] if hasattr(participant_sindy, 'count_parameters') else 0 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^ -KeyError: 4.0 - -2025-05-06 13:51:53,009 - INFO - Processing participant 5.0... -2025-05-06 13:51:53,009 - INFO - Fitting SINDy model for participant 5.0 -2025-05-06 15:35:25,952 - INFO - ================================================================================ -2025-05-06 15:35:25,953 - INFO - EXPERIMENT CONFIG -2025-05-06 15:35:25,953 - INFO - ================================================================================ -2025-05-06 15:35:25,953 - INFO - Found 1 data files: ['eckstein2022.csv'] -2025-05-06 15:35:25,953 - INFO - Processing dataset: eckstein2022.csv -2025-05-06 15:35:26,190 - INFO - Train dataset: torch.Size([306, 124, 5]), Validation dataset: torch.Size([306, 31, 5]) -2025-05-06 15:35:26,190 - INFO - Starting hyperparameter optimization... -2025-05-06 15:35:26,191 - INFO - Trial 0: l1_weight_decay=0.000002, l2_weight_decay=0.004116 -2025-05-06 15:35:33,839 - INFO - Trial 0: RNN Train Loss: 0.6703603; SPICE Train Loss: 3.0480309210387913 -2025-05-06 15:35:33,839 - INFO - Best hyperparameters: {'l1_weight_decay': 1.5590999347169789e-06, 'l2_weight_decay': 0.004115512597838887} -2025-05-06 15:35:33,839 - INFO - Best validation loss: 3.0480 -2025-05-06 15:35:33,840 - INFO - Completed processing dataset: eckstein2022.csv -2025-05-06 15:36:06,464 - INFO - ================================================================================ -2025-05-06 15:36:06,464 - INFO - EXPERIMENT CONFIG -2025-05-06 15:36:06,464 - INFO - ================================================================================ -2025-05-06 15:36:06,464 - INFO - Found 1 data files: ['eckstein2022.csv'] -2025-05-06 15:36:06,464 - INFO - Processing dataset: eckstein2022.csv -2025-05-06 15:36:06,683 - INFO - Train dataset: torch.Size([306, 124, 5]), Validation dataset: torch.Size([306, 31, 5]) -2025-05-06 15:36:06,684 - INFO - Starting hyperparameter optimization... -2025-05-06 15:36:06,684 - INFO - Trial 0: l1_weight_decay=0.000013, l2_weight_decay=0.000016 -2025-05-06 15:46:48,805 - INFO - Trial 0: RNN Train Loss: 0.6703603; SPICE Train Loss: 3.1214122614288193 -2025-05-06 15:46:48,805 - INFO - Best hyperparameters: {'l1_weight_decay': 1.2928624653076173e-05, 'l2_weight_decay': 1.6053304302475684e-05} -2025-05-06 15:46:48,805 - INFO - Best validation loss: 3.1214 -2025-05-06 15:46:48,806 - INFO - Completed processing dataset: eckstein2022.csv diff --git a/id_vs_age_plot.png b/id_vs_age_plot.png new file mode 100644 index 00000000..5500afdb Binary files /dev/null and b/id_vs_age_plot.png differ diff --git a/pipeline_sindy.py b/pipeline_sindy.py index 2372623c..7bc312cb 100644 --- a/pipeline_sindy.py +++ b/pipeline_sindy.py @@ -19,7 +19,7 @@ def main( model: str = None, data: str = None, - save: bool = False, + save: bool = False, #just change and save the parameters to not rerun it # generated dataset parameters participant_id: int = None, @@ -164,8 +164,8 @@ def main( if use_optuna and verbose: print("\nUsing Optuna to find optimal optimizer configuration for each participant") - # setup the SINDy-agent - agent_spice, loss_spice = fit_spice( + # Setup the SINDy-agent + agent_spice, filtered_participant_ids, loss_spice = fit_spice( rnn_modules=list_rnn_modules, control_signals=list_control_parameters, agent=agent_rnn, @@ -185,12 +185,16 @@ def main( verbose=verbose, use_optuna=use_optuna, filter_bad_participants=filter_bad_participants, - ) + ) + + # Update participant_ids with the filtered ones if filtering was applied + if filter_bad_participants: + participant_ids = filtered_participant_ids # If agent_spice is None, we couldn't fit the model, so return early if len(participant_ids) == 0: print("ERROR: Failed to fit SPICE model. Returning None.") - return None, None, None + return None, None, None, [] # save spice modules if save: @@ -202,6 +206,11 @@ def main( file_spice = os.path.join(*file_spice) save_spice(agent_spice=agent_spice, file=file_spice) print("Saved SPICE parameters to file " + file_spice) + + # save the filtered participant IDs ---- + ids_file = file_spice.replace('.pkl', '_participant_ids.npy') + np.save(ids_file, np.array(participant_ids, dtype=int)) + print("Saved filtered participant IDs to file " + ids_file) # --------------------------------------------------------------------------------------------------- # Analysis @@ -271,7 +280,7 @@ def main( features['beta_reward'][pid] = betas['x_value_reward'] features['beta_choice'][pid] = betas['x_value_choice'] - return agent_spice, features, loss_spice + return agent_spice, features, loss_spice, participant_ids if __name__=='__main__': @@ -296,7 +305,7 @@ def main( args = parser.parse_args() - agent_spice, features, loss = main( + agent_spice, features, loss, participant_ids = main( model=args.model, data=args.data, save=args.save, diff --git a/resources/sindy_training.py b/resources/sindy_training.py index cd382d15..7e8c8524 100644 --- a/resources/sindy_training.py +++ b/resources/sindy_training.py @@ -114,7 +114,7 @@ def fit_sindy( ) # fit sindy model - sindy_models[x_feature].fit(x_i, u=control_i, t=1, multiple_trajectories=True, ensemble=False) + sindy_models[x_feature].fit(x_i, u=control_i, t=1, multiple_trajectories=True, ensemble = True) if verbose: sindy_models[x_feature].print() @@ -166,9 +166,10 @@ def fit_spice( get_loss (bool, optional): Whether to compute loss. Defaults to False. verbose (bool, optional): Whether to print verbose output. Defaults to False. use_optuna (bool, optional): Whether to use Optuna for optimizer selection. Defaults to False. + filter_bad_participants (bool, optional): Whether to filter out badly fitted participants. Defaults to False. Returns: - Tuple[AgentSpice, float]: The SPICE agent and its loss + Tuple[AgentSpice, List[int], float]: The SPICE agent, list of well-fitted participant IDs, and loss """ if participant_id is not None: @@ -286,16 +287,19 @@ def fit_spice( # set up a SINDy-based agent by replacing the RNN-modules with the respective SINDy-model agent_spice = AgentSpice(model_rnn=deepcopy(agent._model), sindy_modules=sindy_models, n_actions=agent._n_actions, deterministic=deterministic) - # remove badly fitted participants - if filter_bad_participants: - agent_spice, participant_ids = remove_bad_participants( + # Initialize filtered_ids with all participant_ids + filtered_ids = np.array(participant_ids) + + # Filter badly fitted participants if requested + if filter_bad_participants and data is not None: + agent_spice, filtered_ids = remove_bad_participants( agent_spice=agent_spice, agent_rnn=agent, dataset=data, participant_ids=participant_ids, verbose=verbose, ) - + # compute loss loss = None if get_loss and data is None: @@ -305,10 +309,28 @@ def fit_spice( n_trials_total = 0 mapping_modules_values = {module: 'x_value_choice' if 'choice' in module else 'x_value_reward' for module in agent_spice._model.submodules_sindy} n_parameters = agent_spice.count_parameters(mapping_modules_values=mapping_modules_values) - for pid in participant_ids: - xs, ys = data.xs.cpu().numpy(), data.ys.cpu().numpy() - probs = get_update_dynamics(experiment=xs[pid], agent=agent_spice)[1] - loss += loss_metric(data=ys[pid, :len(probs)], probs=probs, n_parameters=n_parameters[pid]) + + # Use filtered_ids for loss calculation if filtering was applied + ids_to_use = filtered_ids if filter_bad_participants else participant_ids + + for pid in ids_to_use: + if pid not in agent_spice._model.submodules_sindy[list(agent_spice._model.submodules_sindy.keys())[0]]: + continue + + mask_participant_id = data.xs[:, 0, -1] == pid + if not mask_participant_id.any(): + continue + + participant_data = DatasetRNN(*data[mask_participant_id]) + xs, ys = participant_data.xs.cpu().numpy(), participant_data.ys.cpu().numpy() + + probs = get_update_dynamics(experiment=xs, agent=agent_spice)[1] + loss += loss_metric(data=ys[0, :len(probs)], probs=probs, n_parameters=n_parameters[pid]) n_trials_total += len(probs) - loss = loss/n_trials_total - return agent_spice, loss \ No newline at end of file + + if n_trials_total > 0: + loss = loss / n_trials_total + else: + loss = float('inf') # If no valid trials, set loss to infinity + + return agent_spice, filtered_ids, loss \ No newline at end of file diff --git a/resources/sindy_utils.py b/resources/sindy_utils.py index 107f63c9..bf1ee020 100644 --- a/resources/sindy_utils.py +++ b/resources/sindy_utils.py @@ -289,25 +289,24 @@ def remove_bad_participants(agent_spice: AgentSpice, agent_rnn: AgentNetwork, da """Check for badly fitted participants in the SPICE models w.r.t. the SPICE-RNN and return only the IDs of the well-fitted participants. Args: - agent_spice (AgentSpice): _description_ - agent_rnn (AgentNetwork): _description_ - dataset_test (DatasetRNN): _description_ - participant_ids (Iterable[int]): _description_ - verbose (bool, optional): _description_. Defaults to False. + agent_spice (AgentSpice): SPICE agent to filter + agent_rnn (AgentNetwork): Reference RNN agent + dataset (DatasetRNN): Dataset to evaluate on + participant_ids (Iterable[int]): Participant IDs to check + trial_likelihood_difference_threshold (float, optional): Threshold for filtering. Defaults to 0.05. + verbose (bool, optional): Whether to print verbose output. Defaults to False. Returns: AgentSpice: SPICE agent without badly fitted participants Iterable[int]: List of well-fitted participants """ - # if verbose: print("\nFiltering badly fitted SPICE models...") - filtered_participant_ids = [] + # Convert participant_ids to a list of integers + participant_ids = list(map(int, participant_ids)) + removed_participants = [] + good_participants = [] - # Create a copy of the valid participant IDs - valid_participant_ids = list(participant_ids) - - removed_pids = [] for pid in tqdm(participant_ids): # Skip if participant is not in the SPICE model if pid not in agent_spice._model.submodules_sindy[list(agent_spice._model.submodules_sindy.keys())[0]]: @@ -337,32 +336,28 @@ def remove_bad_participants(agent_spice: AgentSpice, agent_rnn: AgentNetwork, da spice_per_action_likelihood = np.exp(ll_spice/(n_trials_test*agent_rnn._n_actions)) rnn_per_action_likelihood = np.exp(ll_rnn/(n_trials_test*agent_rnn._n_actions)) - # Idea for filter criteria: - # If accuracy is very low for SPICE (near chance) but not so low for RNN then bad SPICE fitting (at least a bit higher than chance) - # TODO: Check for better filter criteria + # Filter out participants where SPICE performs much worse than RNN if rnn_per_action_likelihood - spice_per_action_likelihood > trial_likelihood_difference_threshold: - if verbose: - print(f'SPICE trial likelihood ({spice_per_action_likelihood:.2f}) is unplausibly low compared to RNN trial likelihood ({rnn_per_action_likelihood:.2f}).') - print(f'SPICE optimizer may be badly parameterized. Skipping participant {pid}.') + print(f'SPICE trial likelihood ({spice_per_action_likelihood:.2f}) is unplausibly low compared to RNN trial likelihood ({rnn_per_action_likelihood:.2f}).') + print(f'SPICE optimizer may be badly parameterized. Skipping participant {pid}.') # Remove this participant from the SPICE model for module in agent_spice._model.submodules_sindy: if pid in agent_spice._model.submodules_sindy[module]: del agent_spice._model.submodules_sindy[module][pid] - # Remove from valid participant IDs - if pid in valid_participant_ids: - valid_participant_ids.remove(pid) - removed_pids.append(pid) + removed_participants.append(np.int32(pid)) else: - # Keep track of filtered (good) participants - filtered_participant_ids.append(pid) + good_participants.append(np.int32(pid)) + + # Convert to numpy arrays for consistency + good_participants = np.array(good_participants) + removed_participants = np.array(removed_participants) - if verbose: - print(f"\nAfter filtering: {len(valid_participant_ids)} of {len(participant_ids)} participants have well-fitted SPICE models.") - print(f"Removed participants: {removed_pids}") + print(f"After filtering: {len(good_participants)} of {len(participant_ids)} participants have well-fitted SPICE models.") + print(f"Removed participants: {removed_participants}") - return agent_spice, np.array(valid_participant_ids) + return agent_spice, good_participants def save_spice(agent_spice: AgentSpice, file: str): diff --git a/tests/test_optimizers.py b/tests/test_optimizers.py index f17787de..5c4192e1 100644 --- a/tests/test_optimizers.py +++ b/tests/test_optimizers.py @@ -19,7 +19,7 @@ def test_optuna_optimization(): get_loss=True, use_optuna=True, # Enable Optuna optimization filter_bad_participants=True, # filter out - show_plots=True, # show plots + #show_plots=True, # show plots ) if agent_spice is None: diff --git a/tests/test_pipeline_sindy.py b/tests/test_pipeline_sindy.py index 32b90d39..8cde163a 100644 --- a/tests/test_pipeline_sindy.py +++ b/tests/test_pipeline_sindy.py @@ -4,20 +4,13 @@ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import pipeline_sindy - -agent_spice, features, loss = pipeline_sindy.main( - - # data='data/parameter_recovery/data_32p_0.csv', - # model='params/parameter_recovery/params_32p_0.pkl', - - model = 'params/eckstein2022/rnn_eckstein2022_l1_0_0001_l2_0_0001.pkl', - data = 'data/eckstein2022/eckstein2022.csv', - save = True, - - # general recovery parameters +agent_spice, features, loss, participant_ids = pipeline_sindy.main( + model='params/eckstein2022/rnn_eckstein2022_l1_0_0001_l2_0_0001.pkl', + data='data/eckstein2022/eckstein2022.csv', + save=True, participant_id=None, filter_bad_participants=True, - use_optuna=False, + use_optuna=True, # sindy parameters polynomial_degree=1, @@ -39,9 +32,9 @@ alpha_choice=1., counterfactual=False, alpha_counterfactual=0., - analysis=True, get_loss=True, ) -print(loss) \ No newline at end of file +print(f"Final loss: {loss:.4f}") +print("Kept participant IDs:", participant_ids) \ No newline at end of file diff --git a/tests/test_subjects_ids b/tests/test_subjects_ids new file mode 100644 index 00000000..4d7a3cd9 --- /dev/null +++ b/tests/test_subjects_ids @@ -0,0 +1,12 @@ +import numpy as np + +# path to your .npy file +path = '/Users/martynaplomecka/closedloop_rl/params/eckstein2022/spice_eckstein2022_l1_0_0001_l2_0_0001_participant_ids.npy' + +# load the array +participant_ids = np.load(path) + +# view it +print(participant_ids) +# or, if you want a Python list: +print(participant_ids.tolist()) \ No newline at end of file diff --git a/utils/__pycache__/__init__.cpython-311.pyc b/utils/__pycache__/__init__.cpython-311.pyc index edc96bd1..037ec498 100644 Binary files a/utils/__pycache__/__init__.cpython-311.pyc and b/utils/__pycache__/__init__.cpython-311.pyc differ diff --git a/utils/__pycache__/convert_dataset.cpython-311.pyc b/utils/__pycache__/convert_dataset.cpython-311.pyc index 1106c704..1c15bd4c 100644 Binary files a/utils/__pycache__/convert_dataset.cpython-311.pyc and b/utils/__pycache__/convert_dataset.cpython-311.pyc differ diff --git a/utils/__pycache__/plotting.cpython-311.pyc b/utils/__pycache__/plotting.cpython-311.pyc index 8ce13ae5..1bd249cb 100644 Binary files a/utils/__pycache__/plotting.cpython-311.pyc and b/utils/__pycache__/plotting.cpython-311.pyc differ diff --git a/utils/__pycache__/setup_agents.cpython-311.pyc b/utils/__pycache__/setup_agents.cpython-311.pyc index 8c7f6ee6..e510bc68 100644 Binary files a/utils/__pycache__/setup_agents.cpython-311.pyc and b/utils/__pycache__/setup_agents.cpython-311.pyc differ diff --git a/utils/setup_agents.py b/utils/setup_agents.py index c7ffa4b0..9abe6026 100644 --- a/utils/setup_agents.py +++ b/utils/setup_agents.py @@ -78,7 +78,7 @@ def setup_agent_spice( sindy_library_setup: Dict[str, List], sindy_filter_setup: Dict[str, List], sindy_dataprocessing: Dict[str, List], - path_spice: str = None, + path_spice: str = None, #we can change to the path saved before/ threshold: float = 0.05, regularization: float = 0.1, participant_id: int = None,