Skip to content

Conversation

@Amar3tto
Copy link
Collaborator

Please add a meaningful description for your change here


Thank you for your contribution! Follow this checklist to help us incorporate your contribution quickly and easily:

  • Mention the appropriate issue in your description (for example: addresses #123), if applicable. This will automatically add a link to the pull request in the issue. If you would like the issue to automatically close on merging the pull request, comment fixes #<ISSUE NUMBER> instead.
  • Update CHANGES.md with noteworthy changes.
  • If this contribution is large, please file an Apache Individual Contributor License Agreement.

See the Contributor Guide for more tips on how to make review process smoother.

To check the build health, please visit https://github.com/apache/beam/blob/master/.test-infra/BUILD_STATUS.md

GitHub Actions Tests Status (on master branch)

Build python source distribution and wheels
Python tests
Java tests
Go tests

See CI.md for more information about GitHub Actions CI or the workflows README to see a list of phrases to trigger workflows.

@gemini-code-assist
Copy link
Contributor

Summary of Changes

Hello @Amar3tto, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

This pull request significantly enhances Apache Beam's machine learning capabilities by integrating a new PyTorch-based image object detection pipeline. The pipeline leverages the RunInference transform for efficient batched GPU inference with open-source TorchVision models, processing images from cloud storage and outputting structured detection results to BigQuery. This addition is complemented by a new performance benchmark and corresponding documentation, ensuring that the pipeline's efficiency and resource usage can be consistently monitored and evaluated.

Highlights

  • New PyTorch Object Detection Example: Introduced a new example pipeline for PyTorch image object detection using Apache Beam's RunInference, capable of processing image URIs from GCS, performing batched GPU inference with TorchVision models, and writing results to BigQuery.
  • Dedicated Performance Benchmark: Added a new benchmark test (PytorchImageObjectDetectionBenchmarkTest) to measure and track the performance of the PyTorch image object detection pipeline, focusing on stable GPU inference workloads.
  • Updated Documentation and Dependencies: Included new Python dependencies for PyTorch object detection and updated the project's website with a dedicated performance page for the new benchmark, including placeholders for Looker Studio metrics.

🧠 New Feature in Public Preview: You can now enable Memory to help Gemini Code Assist learn from your team's feedback. This makes future code reviews more consistent and personalized to your project's style. Click here to enable Memory in your admin console.

Ignored Files
  • Ignored by pattern: .github/workflows/** (2)
    • .github/workflows/beam_Inference_Python_Benchmarks_Dataflow.yml
    • .github/workflows/load-tests-pipeline-options/beam_Inference_Python_Benchmarks_Dataflow_Pytorch_Image_Detection.txt
Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point by creating a comment using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands on the current page.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in pull request comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments. If you're interested in giving your feedback about your experience with Gemini Code Assist for Github and other Google products, sign up here.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant