Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 72 additions & 0 deletions examples/singa_peft/examples/model/trans.py
Original file line number Diff line number Diff line change
Expand Up @@ -372,3 +372,75 @@ def matmul4d(x1, x2):
ys.append(yb)
y = autograd.cat(ys, axis=0)
return y

class MultiHeadAttention(layer.Layer):
def __init__(self, d_model=512, n_head=8):
super(MultiHeadAttention, self).__init__()
self.d_k = d_model // n_head
assert (
self.d_k * n_head == d_model
), "embed_dim must be divisible by num_heads"
self.d_model = d_model
self.d_v = self.d_k
self.n_head = n_head
self.W_Q = Linear3D(d_model, self.d_k * n_head)
self.W_K = Linear3D(d_model, self.d_k * n_head)
self.W_V = Linear3D(d_model, self.d_v * n_head)

self.scaled_dot_product_attention = ScaledDotProductAttention(d_model, n_head)
self.linear = Linear3D(self.d_v * n_head, d_model)
self.add = layer.Add()
self.layer_norm = LayerNorm(d_model)

def forward(self, query, key, value, attn_mask):
"""
Args:
query: [batch_size, len_q, d_model]
key: [batch_size, len_k, d_model]
value: [batch_size, len_v(=len_k), d_model]
attn_mask: [batch_size, seq_len, seq_len]
Returns:
"""
residual = query
batch_size = query.shape[0]

# (B, S, D) -proj-> (B, S, D_new) -split-> (B, S, H, W) -trans-> (B, H, S, W)
Q = self.W_Q(query)
Q = autograd.reshape(Q, [batch_size, -1, self.n_head, self.d_k])
Q = autograd.transpose(Q, [0, 2, 1, 3])

K = self.W_K(key)
K = autograd.reshape(K, [batch_size, -1, self.n_head, self.d_k])
K = autograd.transpose(K, [0, 2, 1, 3])

V = self.W_V(value)
V = autograd.reshape(V, [batch_size, -1, self.n_head, self.d_v])
V = autograd.transpose(V, [0, 2, 1, 3])

# Q: [batch_size, n_heads, len_q, d_k]
# K: [batch_size, n_heads, len_k, d_k]
# V: [batch_size, n_heads, len_v(=len_k), d_v]

# attn_mask : [batch_size, n_heads, seq_len, seq_len]
attn_mask = MultiHeadAttention._get_attn_mask(attn_mask, self.n_head)

# context: [batch_size, n_heads, len_q, d_v]
# attn: [batch_size, n_heads, seq_len, seq_len]
context, attn = self.scaled_dot_product_attention(Q, K, V, attn_mask)
context = autograd.transpose(context, [0, 2, 1, 3])
# context: [batch_size, len_q, n_heads * d_v]
context = autograd.reshape(context, [batch_size, -1, self.n_head * self.d_v])

output = self.linear(context)
output = self.add(output, residual)
# [batch_size, len_q, d_model]
output = self.layer_norm(output)
return output, attn

@staticmethod
def _get_attn_mask(attn_mask, n_head):
batch_size, seq_q_len,seq_k_len = attn_mask.shape[0], attn_mask.shape[1], attn_mask.shape[2]
attn_mask_np = tensor.to_numpy(attn_mask)
attn_mask_np = np.expand_dims(attn_mask_np, axis=1)
attn_mask_np = np.broadcast_to(attn_mask_np, (batch_size, n_head, seq_q_len, seq_k_len))
return tensor.from_numpy(attn_mask_np)