SMTP bounce message classifier using machine learning. Classifies email bounce/error messages into 16 categories.
Works in both Node.js and browsers - runs entirely client-side with no server required. Zero runtime dependencies.
Note
This classifier was created for EmailEngine, a self-hosted email gateway that allows making REST requests against email accounts. For more information about how bounce classification integrates with EmailEngine, see the messageBounce webhook documentation.
npm install @postalsys/bounce-classifierimport { classify, initialize } from "@postalsys/bounce-classifier";
// Optional: pre-load the model
await initialize();
const result = await classify("550 5.1.1 User Unknown");
console.log(result.label); // 'user_unknown'
console.log(result.confidence); // 0.95
console.log(result.action); // 'remove'const { classify } = require("@postalsys/bounce-classifier");
async function main() {
const result = await classify("550 5.1.1 User Unknown");
console.log(result);
}
main();<script type="module">
import { classify, initialize } from "./src/index.js";
// Specify model path for browser
await initialize({ modelPath: "./model" });
const result = await classify("550 5.1.1 User Unknown");
console.log(result);
</script>See the example/ folder for a complete standalone browser demo that works offline.
Pre-load the model and vocabulary. Called automatically on first classification.
// Node.js - uses bundled model automatically
await initialize();
// Browser - specify model path
await initialize({ modelPath: "./path/to/model" });Classify a single bounce message.
const result = await classify("450 Greylisted, try again in 5 minutes");
// {
// label: 'greylisting',
// confidence: 0.947,
// action: 'retry',
// retryAfter: 300, // seconds (only if timing found in message)
// scores: { ... }
// }
const result2 = await classify("550 blocked using zen.spamhaus.org");
// {
// label: 'ip_blacklisted',
// confidence: 0.958,
// action: 'retry_different_ip',
// blocklist: { name: 'Spamhaus ZEN', type: 'ip' },
// scores: { ... }
// }Get list of all possible classification labels.
const labels = await getLabels();
// ['auth_failure', 'domain_blacklisted', 'geo_blocked', ...]Check if the classifier is initialized.
Reset classifier state for re-initialization.
import {
extractRetryTiming,
identifyBlocklist,
getAction,
extractSmtpCodes,
} from "@postalsys/bounce-classifier";
// Extract retry timing from message
const seconds = extractRetryTiming("try again in 5 minutes");
// 300
// Identify blocklists mentioned
const blocklist = identifyBlocklist("blocked by zen.spamhaus.org");
// { name: 'Spamhaus ZEN', type: 'ip' }
// Get recommended action for a label
const action = getAction("mailbox_full");
// 'retry'
// Extract SMTP codes
const codes = extractSmtpCodes("550 5.1.1 User unknown");
// { mainCode: '550', extendedCode: '5.1.1' }| Label | Description | Action |
|---|---|---|
user_unknown |
Recipient doesn't exist | remove |
invalid_address |
Bad syntax, domain not found | remove |
mailbox_disabled |
Account suspended/disabled | remove |
mailbox_full |
Over quota, storage exceeded | retry |
greylisting |
Temporary rejection, retry later | retry |
rate_limited |
Too many connections/messages | retry |
server_error |
Timeout, connection failed | retry |
ip_blacklisted |
Sender IP on RBL | retry_different_ip |
domain_blacklisted |
Sender domain on blocklist | fix_configuration |
auth_failure |
DMARC/SPF/DKIM failure | fix_configuration |
relay_denied |
Relaying not permitted | fix_configuration |
spam_blocked |
Message detected as spam | review |
policy_blocked |
Local policy rejection | review |
virus_detected |
Infected content detected | remove_content |
geo_blocked |
Geographic/country-based rejection | retry_different_ip |
unknown |
Unclassified bounce type | review |
When the ML model has low confidence (< 50%), the classifier falls back to SMTP status code-based classification using RFC 3463 enhanced status codes. This ensures reliable classification even for messages the model hasn't seen.
const result = await classify("550 5.2.2 Over quota");
// If ML confidence is low, uses 5.2.2 -> mailbox_full fallback
// result.usedFallback will be trueThe example/ folder contains a browser demo. To run it:
cd example
npx serve ..
# Open http://localhost:3000/example/ in your browser- Architecture: Embedding + GlobalAveragePooling + Dense layers
- Vocabulary size: 5,000 tokens
- Max sequence length: 100 tokens
- Validation accuracy: ~95%
- Model size: ~1.3 MB
- Runtime: Pure JavaScript (no native dependencies)
MIT License - Copyright (c) Postal Systems OU